Negating Statements

- 1. We can use DeMorgan's Laws to negate statements that contain " \wedge " or " \vee ".
 - (a) Write down DeMorgan's Laws.
 - (b) Negate the open sentence $x > 0 \land y \leq 0$.
 - (c) Negate the statement "The Broncos win this week or I'll eat my hat".
- 2. We can negate statements that have quantifiers.
 - (a) Negate the statement $\forall x \in S, P(x)$
 - (b) Negate the statement $\exists x \in S, Q(x)$
 - (c) Negate the statement "All primes are odd".
 - (d) Negate the statement "There is a linear function f(x) that does not go through the origin".
- 3. We can negate statements that have multiple quantifiers.
 - (a) Negate the statement $\forall x \in S, \exists y \in T, P(x, y)$.
 - (b) Negate the statement $\exists x \in S, \forall y \in T, P(x, y)$.
 - (c) Negate the statement $\forall n \in \mathbb{Z}, \exists X \subset \mathbb{N}, |X| = n$.
 - (d) Negate the statement $\exists m \in \mathbb{Z}, \forall n \in \mathbb{Z}, m = n + 5$.
 - (e) Negate the statement "For every real number x, there is a real number y for which $y^2 = x$ ".

- 4. We can negate conditional and biconditional statments.
 - (a) Review: Express $P \Rightarrow Q$ using only nots, and or ors.
 - (b) Use what you wrote down above to negate $P \Rightarrow Q$.
 - (c) Now write $P \Leftrightarrow Q$ using only nots, and or or (hint: $P \Leftrightarrow Q = (P \Rightarrow Q) \land (Q \Rightarrow P)$).
 - (d) Negate $P \Leftrightarrow Q$.
- 5. Remember from Section 2.8 that conditional statements sometimes have an implicit universal quantifier in them. You have to remember that when you are negating conditional statements.
 - (a) For example, "If p is odd, then p^2 is odd" can be translated to $\forall p \in \mathbb{Z}$, if p is odd then p^2 is odd. Negate this statement.
 - (b) Negate the statement "If $x \in R$, then $x^2 > 0$ "
 - (c) Not all conditional statements have an implicit universal quantifier. Negate the statement "If all zebras have stripes, then all okapis have no stripes"
- 6. When we put it all together, it can get gnarly. Sometimes it helps to translate the sentence into symbolic logic before you begin negating.
 - (a) Negate the statement "If $n \in \mathbb{N}$, then $12|(n^4 n^2)$ ".
 - (b) Assume for this problem that f(x) is a fixed function. Negate the statement "For all $N \in \mathbb{N}$ there is a real positive number δ such that if $|x 5| < \delta$ then |f(x)| > N".