Functions, Part 3

- Definition: Suppose $f:A\mapsto B$ and $g:B\mapsto C$ are functions. The composition of f with g is a function $g\circ f:A\mapsto C$. For $x\in A, g\circ f(x)=g(f(x))$.
- Definition: Given a set A, the *identity function* on A is the function $i_A:A\mapsto A$ defined as $i_A(x)=x$ for every $x\in A$.
- Given a relation R from A to B, the inverse relation of R is the relation from B to A defined as $R^{-1} = \{(y, x) : (x, y) \in R\}$. In other words, the inverse of R is the relation R^{-1} obtained by interchanging the elements in every ordered pair in R.
- Theorem: The function $f:A\mapsto B$ is bijective if and only if the inverse relation f^{-1} is a function from B to A.
- Definition: If $f: A \mapsto B$ is bijective, then its *inverse* is the function $f^{-1}: B \mapsto A$.
- Key result regarding f and f^{-1} : The functons f and f^{-1} satisfy the equations $f^{-1} \circ f = i_A$ and $f \circ f^{-1} = i_B$.

Example 1: Visual representation of composition

Example 2: Composition using formulas

$$f(x) = \chi^{2}$$
 $g(x) = 2\chi - 1$
 $f(x) = \chi^{2}$ $g(x) = 2\chi - 1$
 $g(x) = \chi^{2} - 1$

Example 3: Inverse relations and inverse functions

relation in verse relation. from N. ton not a funtion. Relation in reverse relation put to (\$, \$0,0) a fulton

injertive El surjetire Es its inveseris afortin.

Example 5: Practice composition and inverses with ordered pairs

Suppose that $A = \{1, 2, 3\}, f : A \mapsto A$ and $g : A \mapsto A, f = \{(1, 3), (2, 1), (3, 2)\}$ and $g = \{(1, 2), (2, 3), (3, 2)\}.$

$$f \circ g = \left\{ \left(\frac{1}{2} \right), \left(\frac{2}{2}, \frac{2}{2} \right), \left(\frac{3}{3}, \frac{1}{3} \right) \right\}$$

$$f \circ f \circ f = \left\{ \left(\frac{1}{2}, \frac{1}{2} \right), \left(\frac{2}{2}, \frac{2}{2} \right), \left(\frac{3}{3}, \frac{3}{3} \right) \right\}$$

If f is bijective, then find f^{-1} $f^{-1} = \{(1,2), (2,3), (3,1)\}$

If g is bijective, then find $g^{-1}g$ is not bijective, since g(1)=g(3)=2.

Example 6: Practice finding inverses with formulas and graphs

Suppose that both the domain and codomain of f are the positive reals, and say that for all x in the domain, $f(x) = x^2$. Is f invertible? If so, then find a formula for f^{-1} . Graph f and f^{-1} on the same graph.

f is "anto" the positive reals;

if
$$y \in \mathbb{R}^+$$
, Let $x = \sqrt{y}$, $f(x) = (\sqrt{y})^2 = y$.

So f is surjective.

f is mjective (one-to-one):

If $f(x) = f(x)$, then $\chi_1^2 = \chi_2^2 \Rightarrow |x| = |x_2|$,

and $\chi_1 \ge 0$ & $\chi_2 \ge 0$, so $\chi_1 = \chi_2$. It is injective f is bijective f thus invertible.

 $f'(x) = f(x)$.

Example 7: Practice finding inverses with formulas

Suppose that $f: \mathbb{R} - \{2\} \mapsto \mathbb{R} - \{1\}$ by $f(x) = \frac{x+1}{x-2}$. Find a formula for $f^{-1}(x)$. Then confirm algebraically that $f^{-1} \circ f = i_A$. we previously shaved f is bijective (see Functions part 2) Now if y G R - E13, If f(x) = y then

x+1 = y => (x-2)y = (x+1) => xy-2y=xx+1 >> xy-x=2y+1 => x(y-1)=2y+1 $\Rightarrow \chi = \frac{2y+1}{y-1} \Rightarrow f^{-1}(y) = \frac{2y+1}{y-1}$ Say $x \in \mathbb{R} - \{2\}$, $f'' = f'' \left(\frac{x+1}{x^2}\right) = \frac{2\left(\frac{x+1}{x-2}\right)+1}{\frac{x+1}{x-2}-1}$ 2x+2+x-2 = 3x = x ... 80 f-if(x)= x, txcA x+1-70+2 3 Thus fof = ida