Functions, Part 3

Definition: Suppose f : A — B and g : B — C arc functions. The composition of f with ¢ is a function
gof:A—C.Forze A goflx)=g(f(x)).

Definition: Given a set A, the identity function on A is the function i4 : A — A defined as ix(z) = z for every
x € A.

Given a relation R from A to B, the inverse relation of R is the relation from B to A defined as R™! = {(y. z) :
(x,y) € R}. In other words, the inverse of R is the relation R™! obtained by interchanging the clements in every
ordered pair in R.

Theorem: The function f: A+ B is bijective if and only if the inverse relation f~' is a function from B to A.
Definition: If f : A~ B is bijective, then its inverse is the function f=': B+ A.

Key result regarding f and f~!: The functons f and f~! satisfy the equations f~'o f =i4 and fo f~! =ig.

Example 1: Visual representation of composition
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Example 2: Composition using formulas

Example 3: Inverse relations and inverse functions
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Example 4: Visual representation of inverse functions

e f{ e gflof
\:\_je-x F 2]‘;1 5 3
b MM3 3 —al} %

Example 5: Practice composition and inverses with ordered pairs™

Suppose that A= {1,2,3}, f: A— Aand g: A— A, f={(1,3),(2.1).(3,2)} and g = {(1,2),(2,3), (3,2)}.
foy= Z(l 1) (2_ Z,§ (3 l)}

fofof= {0, ¢) &3 L\ (3 3)3

If f is bijective, then ﬁndj L {" = i(_( 2:\ LL, 3) (3 ‘)3

If g is bijective, then find g‘lj Jo A qu\e-d—\*"“ ) w 5 ( { )"—-9(3} Bl

Example 6: Practice finding inverses with formulas and graphs

Suppose that both the domain and codomain of f are the positive reals, and say that for all z in the domain,
flx) = 22 Ts f invertible? Tf so, then find a formula for f~!. Graph f and f~! on the same graph. "C
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Example 7: Practice finding inverses with formulas
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Suppose that f : R — {2} — R — {1} by f(z) L Find a formula for f=(x). Then confirm algebraically )
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