Functions, Part 2

- Definition: A function f from a set A into a set B (written $f:A\mapsto B$) is a relation $f\subseteq A\times B$ satisfying the property that for all $a \in A$ the relation f contains exactly one ordered pair of the form (a, b). The statement $(a,b) \in f$ is also written f(a) = b. The set A is called the domain, and B is called the codomain.
- A function $f: A \mapsto B$ is surjective (or "onto") if for every $b \in B$ there is an $a \in A$ with f(a) = b.
- A function $f: A \mapsto B$ is injective (or "one-to-one") if for every $x, y \in A$, $x \neq y$ implies $f(x) \neq f(y)$.
- A function $f: A \mapsto B$ is bijective (or "one-to-one and onto") if it is both surjective and bijective.
- \bullet Here are two ways to show that a function $f:A\mapsto B$ is injective:
 - 1. Direct approach: Suppose $x, y \in A$ and $x \neq y$. Show that $f(x) \neq f(y)$.
 - 2. Contrapositive approach: Suppose $x, y \in A$ and f(x) = f(y). Show that x = y.
- To show that a function $f:A\mapsto B$ is surjective: suppose that $b\in B$. Prove that there is an $a\in A$ for which
- Suppose $f: A \mapsto B$ is a function.
 - 1. If $X \subseteq A$, the image of X is the set $f(X) = \{f(x) : x \in X\} \subseteq B$.
 - 2. If $Y \subseteq B$, the preimage of Y is the set $f^{-1}(Y) = \{x \in A : f(x) \in Y\} \subseteq A$.
 - 3. f(A) is called the range of f.
- To show f is not injective: Find an X, y = A, X xy, flatef(y)
- « To show f is not surjective: Find 6 GB, Va EA, f(a) & b.
- 1. Consider the function $f: \mathbb{N} \to \mathbb{N}$ defined by the formula f(n) = n+3. Determine the range of f. Find $f(\{1, 2, 3\})$. Find $f^{-1}(\{1,2,3\})$. Determine if f is surjective, injective, bijective, providing a full proof for each of these.

range of
$$f = f(N) = \{4, 5, 6, 7, --3\}$$
 $f(\{1,2,3\}) = \{4,5,6\}.$
 $f^{-1}(\{1,2,3\}) = \emptyset$

f is injective: Say $f(x) = f(y)$, then $x+3=y+3 \Rightarrow x=y$.

So f is injective.

So f is injective.

 $x+3=1$
 $x=-2$. But $x \in N$, a contraduction.

So $y = 1 \notin range \notin f$.

So f is not surjective.

 f is not surjective, f is not bijective.

2. Consider the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = |n|. Determine the range of f. Find $f(\mathbb{N})$. Find $f^{-1}(\mathbb{N})$. Determine if f is surjective, injective, bijective, providing a full proof for each of these.

range of
$$f = f(Z) = \{0,1,2,...\} = \{\infty \in Z : K \ge 0\}$$
 $f(N) = \{1,2,3,...\} = N$
 $f'(N) = \{-3,-2,-1,1,2,3,...\} = Z - \{0\}$

f is not rejective, because of $x = 1$ and $y = -1$, then $f(x) = f(y) \ge 1$, but $x \ne y$. So f is not injective.

f is not surjective: consider $-1 \in Z$ the codomain. But $\forall n \in Z$, $f(n) = |n| \ge 0$. So $f(n) \ne -1$. It is not in the range of f . So f is not surjective.

f is neither surjective non injective, so it is not bijective.

3. Consider the function $f: \mathbb{R} - \{2\} \mapsto \mathbb{R} - \{1\}$ defined by $f(x) = \frac{x+1}{x-2}$. Give an example of an element in the set $f^{-1}(\mathbb{N})$. Determine if f is surjective, injective, bijective, providing a full proof for each of these.

f(x) between it is surjective, injective, providing a run proof of each of these.

$$f(3) = \frac{7}{2} = 4 \in \mathbb{N}. \quad \text{So } 3 \in f^{-1}(\mathbb{N}).$$

f is injective. Proof: Suy $f(x) = f(y)$, $x,y \in \mathbb{R} - \{2\}$.

$$\frac{x+1}{x-2} : \frac{y+1}{y-2} \implies x = y = xy + xy - 2y - 2$$

$$\Rightarrow 3y = 3x \implies x = y. \quad \text{So } f \text{ is injective.}$$

f is surjective. Proof: Suy $y \in \mathbb{R} - \{i\}$. Let $x = \frac{2y+1}{y-1}$

If $x = 2$, then $\frac{2y+1}{y-1} = 2 \implies 2y-2 = 2y+1 \implies -2 = 1$.

we conclude $x + 2x = 2x + 1 \implies -2 = 1$.

$$y = \frac{2y+1}{y-1} + 1 = \frac{2y+1 + y-1}{2y-1 - 2(y-1)} \text{ (by clearing denominators)},$$

$$\frac{2y+1}{y-1} - 2 = \frac{2y+1 + y-1}{2y-1 - 2(y-1)} \text{ (by clearing denominators)},$$

$$\frac{3y}{y-1} = y$$
. So f is surjective,

4. Come up with an example of a function $f: \mathbb{R} \to \mathbb{R}$ that is surjective but not injective.