Functions, Part 2

e Definition: A function [ from a sct A into a sct B (written f: A — B) is a relation f € A x B satisfying the
property that for all @ € A tie relation f contains exactly one ordered pair of the form (a,b). The statement
(a,b) € f is also written f(a) =b. The set A is called the domain, and B is called the codomain.

e A function f : A B is surjective (or “onto”) if for every b € B there is an a € A with f(a) = .

e A function f: A — B is injective (or “one-to-one”) if for every z,y € A, x # y implies f(z) # f(y).

e A function f: A~ B is bijective (or “one-to-one and onto™”) if it is both surjective and bijective.

e Here are (wo ways to show thal a [unction [ : A — B is injective:

1. Direct approach: Suppose 2.y € A and x # y. Show thav f(xz) # f(y).
2. Contrapositive approach: Supposc 2.y € A and f(x) = f(y). Show that x = y.

e To show that a function f : A — B is surjective: suppose that b € B. Prove that there is an a € A for which

f(a) =b.
e Suppose f: A~ B is a function.

1. If X C A, the image of X is the set f(X) = {f(z):2 € X} C B.
2. If Y C B, the preimage of Y is the set f~1(Y)={z € A: f(z) e Y} C A.
3. f(A) is called the range of f.
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1. Consider the function f : N — N defined by the formula f(n) = n+3. Determine the range of f. Find f({1, 2, 3}).
Find f~1({1,2,3}). Determine if f is surjective, injective, bijective, providing a full proof for each of these.
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2. Consider the function f : Z + Z defined by f(n) = |n|. Determine the range of f. Find f(N). Find f=}(N).
Determine if f is surjective, injective, bijective, providing a full proof for each of these
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3. Consider the function f: R— {2} — R — {1} defined by f(z) = z i— 5 Give an example of an element in the set

f~L(N). Determine if f is surjective, injective, bijective, providing a full proof for each of these
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4. Come up with an example of a function f: R +— R that is surjective but not injective.
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