Functions, Part 1

Definition: A function f from a set A into a set B (written f : A — B) is a relation f C A x B satisfying the property
that for all a € A the relation f contains exactly one ordered pair of the form (a,b).. The statement (a,b) € f is also
written f(a) = b. The set A is called the domain, and B is called the codomain.

You may be used to thinking of f as a map from R to R given by a formula, whose purpose is often to model some
application. This is one use of a function, but the concept is actually much more general. The concept of a function
will play a key role in every subsequent math class you take. It is one of tools we use to examine and compare
mathematical structures.

There are multiple ways to represent functions, including:
e Visually, with a graphs (this is familiar to you)

e With formulas (this is familiar to you)

In a table (this should be familiar to you)

With words (we do this often in precalculus and calculus)

As a set of ordered pairs (this is probably new to you)

e As an arrow diagram (this is probably new to you)
e As a “machine” (not common, but I think it is sometimes useful)

Cross out all of the examples below that are not functions:
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Some more definitions:

1.

8]

3.

A function f: A — B is surjective (or “onto”) if for every b € B there is an a € A with f(a) =
A function f: A — B is injective (or “one-to-one”) if for every z,y € A, z # y implies f(x) # f(y).

A function f: A+ B is bijective (or “one-to-one and onto”) if it is both surjective and bijective.

Return to the functions above, and determine which are surjective, which are injective and which are bijective.



