Equivalence Relations and Equivalence Classes

Recall from the last worksheet that an equivalence relation is a relation that is reflexive, symmetric and transitive.

1.	Which of the following relations are reflexive, which are symmetric, and which are transitive? alence relations?	Which are equiv-
	(a) The relation "has the same cardinality" on the power set of N Equivalence relation (reflexive, Symmetric	a transitiv

(b) The relation < on the real numbers

reflexive: no

Symmetric: no

transdive: yls

(c) The relation "is genetically related to" on the set of humans

reflexive: yes symmetric: yes

(d) The relation \subset on the power set of $\mathbb Z$

reflexive: yes Symmetre: no transitive: yes

- 2. Consider the following definition: Definition: Suppose R is an equivalence relation on a set A. Given any element $a \in A$, the equivalence class containing a, written [a], is the set $\{x \in A : xRa\}$. In other words, it is the set of all elements of A that relate to a.
 - (a) List the equivalence classes of the relation = on the set of natural numbers.

Each element of N is in it's Own alquiralence class E13, {23, {33, ---

(b) List the equivalence classes of the relation "congruent mod 7".

[0]={...-7,0,7,14,,---3, [1]={...-5,2,9,--3 [3] = { ... -4,3,10, -..] ; [4] = { ... -3,4,11, ... } ; [5] = { ... , -2,5,12, -- } [6]= { ... , -1, 6, 13, --. }

(c) List the equivalence classes of the relation

$$R = \{(a,b): a,b \in \mathbb{Z}, a-b \text{ is even}\}$$

$$[0] = \{n: n \text{ is even}\}$$

$$[1] = \{n: n \text{ is odd}\}$$

3. Prove the following theorem:

Theorem: Suppose R is an equivalence relation on a set A. Suppose that $a, b \in A$. Then [a] = [b] if and only if aRb.

See proof of Theorem 11-1 in textbook

4. This problem concerns the idea of a partition. Recall the definition: Definition: A partition of a set A is a set of non-empty subsets of A, such that the union of all the subsets equals A, and the intersection of any two different subsets is \emptyset .

The following theorem is proved in the textbook: If R is an equivalence relation on a set A, then the set of equivalence classes of R forms a partition of A.

The theorem states that an equivalence relation on A automatically defines a partition. It is also true that any partition of A defines an equivalence relation on A. How would I use the partition to determine if xRy?

yes. This is discussed on page 190, & exercise 4 of the text
define XRY if X and y are in the same subset of the partition.