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Congruence mod n and Modular Arithmetic

1. Given integers a and b and n € N, we say a = b(modn) if n , (0\"’5>
2. Review of the division algorithm:

(a) The Division Algorithm: Given integers ¢ and b with b > 0, there exist unique integers g and r {or which
a= iy =iy o~ ,and 0<r < b

(b) What do g and r stand [or in the division algorithm? ¢ = _ g vg ﬁ‘iﬁ% WF = € mainde

(c) For a =367 and b =6, find g and r.

3263 =6.61 ¢ 1
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3. Tf the remainder when a is divided by n and the remainder when b is divided by n are 'H‘{ Samne.
then a = b(modn).
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4. For each of the mtegers m = 17, m = 7, m = =7 and m = —45, find the integer » in {0, 1,2.3} such that
m = r(modAa).
17 = I {mod4)
7= k (mod4)
—7= [ (mod4)
—45 = 3 (mnod4)

5. List the set of elements in Z that are congruent to 0 modulo 3. Then write that set in set-builder notation. Do
the same for the integers that are congruent to 1 modulo 3 then again for the integers that are congruent to 2
modulo 3.
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6. There are a couple ol common ways 1o determine il two numbers are congruent. modulo n. One way is (o reduce
each of them modulo n to a number in {0,1.2,....n— 1} and then compare. Another is to find their difference
and see if it is a multiple of n. Try using each of these methods to determine if 342 = 482(mod7).
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7. It can be shown that if & = b(inodn) and ¢ = d(modn) then (a+ ¢) = (b+ d)(modn). Use this idea to calculate
(782 + 385)(mod 10} withoul frst adding.

S = Iled to)/‘ 3%S = S i 0)
(S52+2%5) (medk 10) = (248 ) ohi0) =

8. Similarly to the problem above, it can be shown that il @ = b( mod n) and ¢ = d(mod n) then (ac) = (bd)( mod n)
(This is problem 24 of Chapter 5.) Use this idea to calculate (182 x 4931)(mod3).
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[52x a3l = (222 (mad2) T <l 3) = [ (el 3)

9. Caleulate 11%(mod4). Give the answer as a number in the set {0, 1, Z,3} that is congruent to 11%(mod4).

K= ?)(rr»cd‘*&
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10. Determine the last digit in 7°7. % [
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11. Much like in standard addition, there is an additive identity modulo n and munbers have additive inverses modulo
n. What is the additive identity modulo n7 What is the additive inverse of 5 modulo 77

dditine ('M'.“{-C\] =0, Cx&d&ib&n\w L’f) S-(mr‘ri?') T o S | ?—)E l{mrof?-)

12. Much like in standard multiplication, there is a multiplicative identity modulo n and some munbers have niul-
tiplicative inverses modulo n. What is the multiplicative identity modulo n? Find the inverses of the nmnbers
modulo 5. Do the same [or the numbers modulo 6.
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