Math 2001

Practice with Conditional and Biconditional Statements

1. Give the truth table for $P \Rightarrow Q$.

7	Q	7=DQ
T	T	T
T	F	F
F	T	T
F	F	T

- 2. Fill in the blanks below so that all of the statements below are equivalent to the conditional statement $P \Rightarrow Q$.
 - If \overline{P} then $\underline{\mathbb{Q}}$.
 - \mathbb{Q} , if $\overline{?}$.
 - \mathbb{Q} , whenever \overline{P} .
 - \underline{P} only if \underline{Q} .
 - $\overline{?}$ is a sufficient condition for $\underline{\mathbb{Q}}$.
 - <u>Q</u> is a necessary condition for <u>?</u>.
 - \mathbb{Q} , provided \mathbb{P} .
- 3. Suppose that X is a mome rath whenever X is a borogove. Which of the following is true? $P \Rightarrow Q$
- NO (A) If X is a mome rath, then X is a borogove. $Q \rightarrow P$
- NO (X) is a mome rath only if X is a borogove. $(X) \Rightarrow (X)$
- NO Seing a mome rath is a sufficient condition for being a borogove. $\mathbb{Q} \Rightarrow \mathbb{P}$
- YES (d) Being a mome rath is a necessary condition for being a borogove. P > Q
- NO (A) To be a mome rath, it is necessary to be a borogove. $(A) \Rightarrow P$

4. Rephrase the following statement into "If-then" form:

"An integer is prime only if 2 does not divide it".

Is the statement true? Is the converse true?

5. Give the truth table for $P \Leftrightarrow Q$.

7	Q	PEDQ
T	T	T
T	F	F
Ł	T	F
7	F	T

6. Write the biconditional statement $P \Leftrightarrow Q$ in words, in three distinct ways.

7. Rephrase the biconditional "The triangle $\triangle ABC$ is isosceles if and only if $\angle A \cong \angle B$ " in another way. Is the biconditional statement true or false? Explain.

"If the triangle-DABC is isosceles, then LA = LB, and if LA = LB then DABC is isosceles."

FALSE.

Although $2A \subseteq 2B \implies \triangle ABC$ is isosceled is true.

(just by the definition of isosceles), the converse is not.

That is, "If $\triangle ABC$ is isosceles, then $\angle A \subseteq \angle B$ "

That is, fulse. as a counter-enough, consider this example:

This is an isosceles triangle, but $\angle A \not\equiv \angle B$.

But the second of the converse is not.