Algebra Lemmas

You may use the following axioms, lemmas, and properties in your proofs.

Lemma 1: \mathbb{Z} is closed under addition. **Lemma 2:** \mathbb{Z} is closed under multiplication. **Reflexive Axiom:** For $a \in \mathbb{Z}$, a = a. Symmetric Axiom: For $a, b \in \mathbb{Z}$, if a = b, then b = a. **Transitive Axiom:** For $a, b, c \in \mathbb{Z}$, if a = b and b = c, then a = c. Additive Axiom: For $a, b, c \in \mathbb{Z}$, if a = b, then a + c = b + c. Additive property of inequality: For $a, b, c \in \mathbb{Z}$, if a < b, then a + c < b + c. **Multiplicative property of inequality:** For $a, b, c \in \mathbb{Z}$, if a < b, and c > 0, then ac < bc. Additive identity: For all $a \in \mathbb{Z}$, a + 0 = a. Multiplicative identity: For all $a \in \mathbb{Z}$, $a \cdot 1 = a$. Additive inverses: For all $a \in \mathbb{Z}$, there exists an integer -a such that a + (-a) = 0. Multiplicative Axiom: For $a, b, c \in \mathbb{Z}$, if a = b, then ac = bc. **Zero Axiom of Multiplication:** For $a, b \in \mathbb{Z}$, if ab = 0, then a = 0 or b = 0. **Cancellation law:** For $a, b, c \in \mathbb{Z}$, suppose $c \neq 0$. If ac = bc, then a = b. Cancellation of negatives: $-1 \cdot -1 = 1$. Commutative Law of Addition: For $a, b \in \mathbb{Z}$, a + b = b + a. Commutative Law of Multiplication: For $a, b \in \mathbb{Z}$, ab = ba. Associative Law of Addition: For $a, b, c \in \mathbb{Z}$, (a+b) + c = a + (b+c). Associative Law of Multiplication: For $a, b, c \in \mathbb{Z}$, (ab)c = a(bc). **Distributive Law:** For $a, b, c \in \mathbb{Z}$, a(b+c) = ab + ac.