Proof Test 4

Math 2001, Spring 2023. Katherine E. Stange.

Tools

You might find it useful to call on these basic facts and definitions.
Definition 1. A number $x \in \mathbb{R}$ is rational if it can be written as $x=a / b$ where $a, b \in \mathbb{Z}$. Otherwise x is called irrational.

Proposition 1. The number $\sqrt{2}$ is irrational.
Proposition 2. A real number x is rational if and only if $-x$ is rational.
Proposition 3. Suppose $x=a+b$. If a and b are rational, then so is x.
Proposition 4. Suppose $x=a+b$. If a is rational and b is irrational, then x is irrational.

Task

Please prove the following theorem.
Theorem 1. Any rational number can be written as a sum of two irrational numbers.
Hint: For example, $3=\sqrt{2}+(3-\sqrt{2})$.
Proof. Let x be a rational number. By Proposiion 1, $\sqrt{2}$ is irrational. By Proposition 2, $-\sqrt{2}$ is irrational. By Proposition $4, x-\sqrt{2}$ is a sum of a rational and an irrational, hence irrational. Now, write

$$
x=\sqrt{2}+(x-\sqrt{2})
$$

As we have seen above, $\sqrt{2}$ and $x-\sqrt{2}$ are irrational, so we have written x as a sum of two irrational numbers.

1 ChatGPT contradicts itself

It is not true that any rational number can be written as a sum of two irrational numbers. For example, the rational number 1 cannot be written as the sum of two irrational numbers.

To see why, suppose that 1 could be written as the sum of two irrational numbers x and y. Then we would have: $1=\mathrm{x}+\mathrm{y}$
Rearranging this equation, we get:
$\mathrm{x}=1-\mathrm{y}$
Now, suppose that x and y are both irrational. Then 1 - y must also be irrational, since the difference between two irrational numbers is not guaranteed to be rational. But this would imply that x is the sum of two irrational numbers (1 and -y), which is a contradiction. Therefore, it is not possible to write 1 as the sum of two irrational numbers.

However, it is true that any rational number can be written as the difference of two irrational numbers. To see why, let r be a rational number, and let a be an irrational number. Then $\mathrm{r}-\mathrm{a}$ is also irrational (since the difference of a rational number and an irrational number is always irrational). So we have:
$r=(r-a)+a$
where ($\mathrm{r}-\mathrm{a}$) and a are both irrational. Therefore, any rational number can be written as the difference of two irrational numbers.

