Worksheet on Functions

March 10, 2020

1 Functions

A function $f: A \rightarrow B$ is a way to assign one value of B to each value of $A . A$ is the domain. B is the codomain.

More formally, you could say f is a subset of $A \times B$ which contains, for each $a \in A$, exactly one ordered pair with first element a.

2 Ways to draw a function

For each function, do the following:

1. list it as a table,
2. list it as a set of ordered pairs from $A \times B$,
3. draw it as a 'graph,'
4. draw it as an arrow diagram.
5. $f:\{a, b, c\} \rightarrow\{1,2\}$ given by $f(a)=f(b)=1$ and $f(c)=2$.
6. $f:\{0,1,2\} \rightarrow\{0,1,2\}$ given by $f(x)=x$.
7. $f: \mathbb{N} \rightarrow \mathbb{N}$ given by $f(x)=x+1$.

3 Injective, Surjective, Bijective

Definition 1. 1. A function $f: A \rightarrow B$ is surjective if for every $b \in B$, there exists an $a \in A$ such that $f(a)=b$. (Another word for surjective is onto.)
2. A function $f: A \rightarrow B$ is injective if for every pair $a_{1}, a_{2} \in A, a_{1} \neq a_{2}$ implies $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. (Another word for injective is 1-to-1.)
3. A function $f: A \rightarrow B$ is bijective if it is both surjective and injective.

For each function on the last page, indicate if it is injective, surjective and/or bijective.
Definition 2. The range of $f: A \rightarrow B$ is

$$
\{b \in B: \exists a \in A, f(a)=b\}
$$

In other words, the range is the collection of values of B that get 'hit' by the function.

1. List all functions $f:\{a, b\} \rightarrow\{x, y\}$. For each, indicate if it is injective, surjective and/or bijective. State the range.
2. Is the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(x)=2 x$ injective, surjective and/or bijective? Give the range in set builder notation.
3. Give examples of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ (like sin, x^{2} etc.) which are:
(a) injective but not surjective
(b) surjective but not injective
(c) bijective
(d) neither injective nor surjective
4. Explain the properties of the graph of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ in the plane \mathbb{R}^{2} which correspond to injectivity or surjectivity (e.g. vertical line test).
5. Let \mathbb{R}^{+}denote the positive real numbers. Write a nice proof that the function $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$ given by $f(x)=e^{x}$ is bijective.
