Worksheet on Functions

March 10, 2020

1 Functions

A function $f: A \to B$ is a way to assign one value of B to each value of A. A is the domain. B is the codomain.

More formally, you could say f is a subset of $A \times B$ which contains, for each $a \in A$, exactly one ordered pair with first element a.

2 Ways to draw a function

For each function, do the following:

- 1. list it as a table,
- 2. list it as a set of ordered pairs from $A \times B$,
- 3. draw it as a 'graph,'
- 4. draw it as an arrow diagram.
- 1. $f: \{a, b, c\} \to \{1, 2\}$ given by f(a) = f(b) = 1 and f(c) = 2.

2. $f: \{0,1,2\} \to \{0,1,2\}$ given by f(x) = x.

3. $f: \mathbb{N} \to \mathbb{N}$ given by f(x) = x + 1.

3 Injective, Surjective, Bijective

Definition 1. 1. A function $f: A \to B$ is surjective if for every $b \in B$, there exists an $a \in A$ such that f(a) = b. (Another word for surjective is onto.)

- 2. A function $f: A \to B$ is injective if for every pair $a_1, a_2 \in A$, $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$. (Another word for injective is 1-to-1.)
- 3. A function $f: A \to B$ is bijective if it is both surjective and injective.

For each function on the last page, indicate if it is injective, surjective and/or bijective.

Definition 2. The range of $f: A \to B$ is

$$\{b \in B : \exists a \in A, f(a) = b\}.$$

In other words, the range is the collection of values of B that get 'hit' by the function.

1. List all functions $f:\{a,b\} \to \{x,y\}$. For each, indicate if it is injective, surjective and/or bijective. State the range.

2. Is the function $f: \mathbb{Z} \to \mathbb{Z}$ given by f(x) = 2x injective, surjective and/or bijective? Give the range in set builder notation.

- 3. Give examples of functions $f: \mathbb{R} \to \mathbb{R}$ (like sin, x^2 etc.) which are:
 - (a) injective but not surjective
 - (b) surjective but not injective
 - (c) bijective
 - (d) neither injective nor surjective
- 4. Explain the properties of the graph of a function $f: \mathbb{R} \to \mathbb{R}$ in the plane \mathbb{R}^2 which correspond to injectivity or surjectivity (e.g. vertical line test).
- 5. Let \mathbb{R}^+ denote the positive real numbers. Write a nice proof that the function $f: \mathbb{R} \to \mathbb{R}^+$ given by $f(x) = e^x$ is bijective.