# Worksheet on Functions 

March 10, 2020

## 1 Functions: terminology

- A function $f: A \rightarrow B$ is a way to assign one value of $B$ to each value of $A$. $A$ is the domain. $B$ is the codomain.
- The function $f: A \rightarrow A$ that takes $f(a)=a$ for every $a \in A$ has a special name: the identity function.
- The image of a subset $X \subset A$ is the set of things $X$ goes to in $B$, ie.

$$
f(X)=\{f(x): x \in X\}
$$

- The image of $A$ has a special name, the range.
- The pre-image of a subset $Y \subset B$ is the set of things that go into $Y$, ie.

$$
f^{-1}(Y)=\{a \in A: f(a) \in Y\}
$$

- A function $f: A \rightarrow B$ is surjective if for every $b \in B$, there exists an $a \in A$ such that $f(a)=b$. (Another word for surjective is onto.)
- A function $f: A \rightarrow B$ is infective if for every pair $a_{1}, a_{2} \in A, a_{1} \neq a_{2}$ implies $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. (Another word for injective is 1-to-1.)
- A function $f: A \rightarrow B$ is bijective if it is both surjective and injective.


## 2 Practice problems

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$.
(a) What is the domain? $\mathbb{R}$
(b) What is the codomain?
$\mathbb{R}$
(c) What is the range? $[0, \infty)$
(d) Is this the identity function? (Yes/No)
no
(e) Is this injective?
(f) Is this surjective?
(g) Is this bijective?
no
no
(h) What $f([0,1])$ ?
no
(i) What is $f^{-1}([4, \infty)$ ?
$\stackrel{[0,1]}{(-\infty, 2]} \cup[2, \infty)=\{x \in \mathbb{R}:|x| \geqslant 2\}$
2. Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be given by $f(x)=3 x$.
(a) What is the domain? $\mathbb{Z}$
(b) What is the codomain? $\mathbb{R}$
(c) What is the range? (use set builder)
(d) Is this the identity function? (Yes/No) No.
(e) Is this injective? yes
(f) Is this surjective? no
(g) Is this bijective? no
$-Z_{1}, 0, \mid, 2 \quad$ (h) What $f(\{x \in \mathbb{Z}:|x|<3\})$ ? $\quad\{0,3,6,-3,-6\}$
(i) What is $f^{-1}(5 \mathbb{Z})$ ? Note that $5 \mathbb{Z}$ is notation for $5 \mathbb{Z}=\{5 x: x \in \mathbb{Z}\} . \quad 5 \mathbb{Z}$.
3. Draw a graph of a function which is injective but not surjective, which has domain and codomain $\mathbb{R}$, and satisfies $f([0, \infty])=[1, \infty]$ and $f^{-1}([0, \infty])=\mathbb{R}$.

4. Given two sets of equal cardinality $|A|=|B|=n$.
(a) How many functions are there $f: A \rightarrow B$ ?
(b) How many of these are bijective? $n$ !
(c) Can you construct one which is injective but not bijective? Not (not sursective) possible.

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$


5. Let $A$ and $B$ be finite sets, and suppose $f: A \rightarrow B$.

Fill in the table with $P$ (possible) and $I$ (impossible).

|  | $\|A\|=\|B\|$ | $\|A\|>\|B\|$ | $\|A\|<\|B\|$ |
| ---: | :--- | :--- | :--- |
| bijective |  |  |  |
| surjective, not injective |  |  |  |
| injective, not surjective |  |  |  |
| neither injective nor surjective |  |  |  |

6. Prove that the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $2 x+3$ is injective, but not surjective.
