Worksheet on Functions

March 10, 2020

1 Functions: terminology

- A function $f:A\to B$ is a way to assign one value of B to each value of A. A is the domain. B is the codomain.
- The function $f: A \to A$ that takes f(a) = a for every $a \in A$ has a special name: the identity
- The image of a subset $X \subset A$ is the set of things X goes to in B, i.e.

$$f(X) = \{ f(x) : x \in X \}.$$

- The image of A has a special name, the range.
- The pre-image of a subset $Y \subset B$ is the set of things that go into Y, i.e.

$$f^{-1}(Y) = \{ a \in A : f(a) \in Y \}.$$

- A function $f: A \to B$ is surjective if for every $b \in B$, there exists an $a \in A$ such that f(a) = b. (Another word for surjective is *onto*.)
- A function $f: A \to B$ is injective if for every pair $a_1, a_2 \in A$, $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$. (Another word for injective is 1-to-1.)
- A function $f: A \to B$ is bijective if it is both surjective and injective.

Practice problems

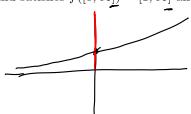
- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$.
 - R (a) What is the domain?
 - IR. (b) What is the codomain?
 - (c) What is the range? [O, ∞)
 - (d) Is this the identity function? (Yes/No)
 - (e) Is this injective? NO.
 - (f) Is this surjective?
 - (g) Is this bijective?
 - (h) What f([0,1])?
 - $\begin{bmatrix} 0 & 1 \\ -\infty & -2 \end{bmatrix} \cup \begin{bmatrix} 2 & \infty \end{pmatrix} = \left\{ x \in \mathbb{R} : |x| \geqslant 2 \right\}$ (i) What is $f^{-1}([4,\infty))$?
- 2. Let $f: \mathbb{Z} \to \mathbb{R}$ be given by f(x) = 3x.
 - \mathbb{Z} (a) What is the domain?
 - (b) What is the codomain?
 - {3x: x ∈ Z} (c) What is the range? (use set builder)

R

n o

(d) Is this the identity function? (Yes/No) No.

- (e) Is this injective?
- (f) Is this surjective?
- (g) Is this bijective?
- -271,0,1,2
- 90,3,6,-3,-63 (h) What $f(\{x \in \mathbb{Z} : |x| < 3\})$?
- (i) What is $f^{-1}(5\mathbb{Z})$? Note that $5\mathbb{Z}$ is notation for $5\mathbb{Z} = \{5x : x \in \mathbb{Z}\}$.
 - 57.
- 3. Draw a graph of a function which is injective but not surjective, which has domain and codomain \mathbb{R} , and satisfies $f([0,\infty]) = [1,\infty]$ and $f^{-1}([0,\infty]) = \mathbb{R}$. $f: \mathbb{R} \to \mathbb{R}$



- 4. Given two sets of equal cardinality |A| = |B| = n.
 - (a) How many functions are there $f: A \to B$?
 - (b) How many of these are bijective?
- 5. Let A and B be finite sets, and suppose $f: A \to B$.
- Fill in the table with P (possible) and I (impossible).

	A = B	A > B	A < B
bijective			
surjective, not injective			
injective, not surjective			
neither injective nor surjective			

6. Prove that the function $f: \mathbb{Z} \to \mathbb{Z}$ given by 2x + 3 is injective, but not surjective.