## Worksheet on Functions 2 - Solutions

March 15, 2020

## 1 Functions: terminology

- A function $f: A \rightarrow B$ is a way to assign one value of $B$ to each value of $A$. $A$ is the domain. $B$ is the codomain.
- The function $f: A \rightarrow A$ that takes $f(a)=a$ for every $a \in A$ has a special name: the identity function.
- The image of a subset $X \subset A$ is the set of things $X$ goes to in $B$, i.e.

$$
f(X)=\{f(x): x \in X\}
$$

- The image of $A$ has a special name, the range.
- The pre-image of a subset $Y \subset B$ is the set of things that go into $Y$, i.e.

$$
f^{-1}(Y)=\{a \in A: f(a) \in Y\}
$$

- A function $f: A \rightarrow B$ is surjective if for every $b \in B$, there exists an $a \in A$ such that $f(a)=b$. (Another word for surjective is onto.)
- A function $f: A \rightarrow B$ is injective if for every pair $a_{1}, a_{2} \in A, a_{1} \neq a_{2}$ implies $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. (Another word for injective is 1-to-1.)
- A function $f: A \rightarrow B$ is bijective if it is both surjective and injective.


## 2 Practice problems

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$.
(a) What is the domain? $\mathbb{R}$
(b) What is the codomain? $\mathbb{R}$
(c) What is the range? $[0, \infty]$
(d) Is this the identity function? No.
(e) Is this injective? No. (e.g. 2 and -2 go to 4 )
(f) Is this surjective? No. (e.g. nothing goes to -1 )
(g) Is this bijective? No.
(h) What $f([0,1])$ ? $[0,1]$
(i) What is $f^{-1}([4, \infty]) ?(-\infty,-2] \cup[2, \infty)$
2. Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be given by $f(x)=3 x$.
(a) What is the domain? $\mathbb{Z}$
(b) What is the codomain? $\mathbb{R}$
(c) What is the range? $\{3 x: x \in \mathbb{Z}\}$.
(d) Is this the identity function? No.
(e) Is this injective? Yes.
(f) Is this surjective? No. (e.g. $\sqrt{2}, \pi$ or even 1 are not in the range.)
(g) Is this bijective? No.
(h) What $f(\{x \in \mathbb{Z}:|x|<3\})$ ? $\{f(-2), f(-1), f(0), f(1), f(2)\}=\{-6,-3,0,3,6\}$.
(i) What is $f^{-1}(5 \mathbb{Z})$ ? Note that $5 \mathbb{Z}$ is notation for $5 \mathbb{Z}=\{5 x: x \in \mathbb{Z}\}$. Answer: $\{x \in \mathbb{Z}$ : $f(x)$ is a multiple of 5$\}=\{x \in \mathbb{Z}: 5 \mid 3 x\}=\{x \in \mathbb{Z}: 5 \mid x\}=5 \mathbb{Z}$.
3. Draw a graph of a function which is injective but not surjective, which has domain and codomain $\mathbb{R}$, and satisfies $f([0, \infty])=[1, \infty]$ and $f^{-1}([0, \infty])=\mathbb{R}$.
4. Given two sets of equal cardinality $|A|=|B|=n$.
(a) How many functions are there $f: A \rightarrow B$ ? $n^{n}$ since each of $n$ items in $A$ has $n$ possible places to go.
(b) How many of these are bijective? To be bijective, you can't reuse an output. So essentially, we are ordering the elements of $B$ in the second column of the table representing the function. That means, the number of bijective functions is $n$ !.
(c) Can you construct one which is injective but not bijective? Equivalently, that would mean injective, but not surjective. Injective means you can't reuse the outputs while building a function table. But there are exactly $n$ outputs, so unless you reuse some, so won't have any left over. So it will be surjective if it is injective. So: the answer is no.
5. Let $A$ and $B$ be finite sets, and suppose $f: A \rightarrow B$.

Fill in the table with $P$ (possible) and $I$ (impossible).

|  | $\|A\|=\|B\|$ | $\|A\|>\|B\|$ | $\|A\|<\|B\|$ |
| ---: | ---: | ---: | ---: |
| bijective | P | I | I |
| surjective, not injective | I | P | I |
| injective, not surjective | I | I | P |
| neither injective nor surjective | P | P | P |

6. Prove that the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $2 x+3$ is injective, but not surjective.

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be given by $f(x)=2 x+3$.
We will show that $f$ is injective. Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then

$$
\begin{aligned}
2 x_{1}+3 & =2 x_{2}+3 \\
2 x_{1} & =2 x_{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

Hence $x_{1}=x_{2}$ and therefore $f$ is injective.
Now we will show that $f$ is not surjective. Consider $y=2$. This $y$ is in the codomain. If $f(x)=y$, we would have

$$
2 x+3=2
$$

which implies $x=-1 / 2$. Since this value of $x$ is not in the domain, there is no value of $x$ in the domain with $f(x)=y$. Hence $f$ is not surjective.

