Example sets problems (Katherine E. Stange, Math 2001, CU Boulder)

- 1. Let $A = \{1, 2, 5, 6\}$ and $B = \{1, 2, 3, 4\}$ and $C = \{2, 3\}$.
 - (a) Compute $A \cup B$.
 - (b) Compute $A \cap B$.
 - (c) Compute A B.
 - (d) Compute A C.
 - (e) Compute the complement of A in the universe $\{1, 2, 5, 6, 7\}$.
- 2. Let A, B and C be arbitrary sets. Draw a Venn diagram illustrating $(A \cap B) \cup C$.
- 3. If the complement of $\{a, b\}$ in the universe S is $\{e, f\}$, then what is S?
- 4. Let $A = \{a, b, c, d, e, f\}$ and $B = \{d, e, f, g, h, i\}$ and $C = \{a, b, c, d, e, f, g, h, i, j, k, l\}.$
 - (a) Compute $A \cup B$.
 - (b) Compute $A \cap B$.

(c) Compute A - B.

- (d) Compute A C.
- (e) Compute the complement of A in the universe C.
- 5. Draw a Venn diagram illustrating $(A \cup B) \cap C$.
- 6. What is the complement of the set of even integers with respect to the set of all integers?
- 7. Compute the power set $\mathscr{P}(\{b, \{1, 2\}\})$.
- 8. Compute the Cartesian product $A \times A \times A$ where $A = \{1, \emptyset\}$.
- 9. Draw a picture (on the real plane) of the Cartesian product $[1, 2) \times [0, 2]$.

10. Is the following region of the plane a Cartesian product? If yes, gives sets A and B so that it is $A \times B$.

 $YES, \quad NO$ If yes, A = B = B

11. Is the following region of the plane a Cartesian product? If yes, gives sets A and B so that it is $A \times B$.

 $YES, \quad NO$

If yes,
$$A = B =$$

12. Suppose that A and B are sets satisfying $|\mathscr{P}(A) \times B| = 12$, and B has fewer than 4 elements. Then what are the cardinalities of A and B?

$$|A| = |B| =$$

13. Mark each of the following as TRUE, FALSE or NOT WELL-DEFINED (for example, if the set builder notation isn't valid – watch out for these!):

(a) $1 \in \{x \in \mathbb{R} : x^2 + 1\}$	TRUE,	FALSE,	NOT WELL-DEFINED
(b) $1 \in \{x^2 + 1 : x \in \mathbb{R}\}$	TRUE,	FALSE,	NOT WELL-DEFINED
(c) $(-\infty,4] \subseteq (1,8)$	TRUE,	FALSE,	NOT WELL-DEFINED
(d) $\{(x,x): x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}$	TRUE,	FALSE,	NOT WELL-DEFINED
(e) $\{\sin(x) : x \in \mathbb{R}\} = [-1, 1]$	TRUE,	FALSE,	NOT WELL-DEFINED
(f) $\{1, 2, 3\} \in \{A \subseteq \mathbb{Z} : \{1, 2\} \subseteq A\}$	}		
	TRUE,	FALSE,	NOT WELL-DEFINED
(g) $ \{x \in \mathbb{R} : x^2 = 3\} = 2$	TRUE,	FALSE,	NOT WELL-DEFINED

- 14. Give set builder notation for the set of real numbers whose squares are larger than 7. Use symbols exclusively (not english words).
- 15. Give set builder notation for the upper half plane, i.e. the part of the Cartesian plane lying above the x-axis (not including the x-axis). Use symbols exclusively (not english words).
- 16. Give set builder notation for set of subsets of the integers that include 0 (for example, $\{0, 1, 2\}$ is in this set, but $\{1, 2\}$ is not). Use symbols exclusively (not english words).
- 17. Let $A = \{1, \emptyset, \{3\}\}$ and $B = \{1, 2\}$.
 - (a) Compute the power set of A.

- (b) Compute the Cartesian product $A \times B$.
- (c) Compute the Cartesian product $B \times \emptyset$.
- (d) Compute the following cardinality (not the set itself):

$$|\mathscr{P}(A \times B)| =$$

- 18. Let |A| = n and |B| = m. What is the cardinality of $\mathscr{P}(A^k) \times B$?
- 19. For each set, determine if it is a Cartesian product. If it is, then find the two sets A and B so that it is $A \times B$. If it is not, state clearly that it is not.
 - (a) $\{(1, a), (1, b), (2, a), (2, b), (2, c)\}$
 - (b) In \mathbb{R}^2 , the square with vertices (0,0), (0,1), (1,0) and (1,1).
 - (c) In \mathbb{R}^2 , the triangle with vertices (0,0), (0,1) and (1,0).
- 20. Mark each of the following as TRUE, FALSE or NOT WELL-DEFINED (for example, if the set builder notation isn't valid watch out for these!):

(a)	$2 \in \{x \in \mathbb{Z} : 2x\}$	TRUE,	FALSE,	NOT WELL-DEFINED
(b)	$2 \in \{2x : x \in \mathbb{Z}\}$	TRUE,	FALSE,	NOT WELL-DEFINED
(c)	$1/2 \in \{x^2 : x \in \mathbb{R}\}$	TRUE,	FALSE,	NOT WELL-DEFINED
(d)	$\{(x,x^2):x\in \mathbb{R}\}\subseteq \{(x,y):x\in$	$\mathbb{R}, y \in \mathbb{Z}$	ł	
		TRUE,	FALSE,	NOT WELL-DEFINED
(e)	$\{\cos(x): x \in \mathbb{R}\} = \{\sin(x): x \in \mathbb{R}\}$	$\equiv \mathbb{R} \}$		
		TRUE,	FALSE,	NOT WELL-DEFINED
(f)	$(3,4] \subseteq (3,4)$	TRUE,	FALSE,	NOT WELL-DEFINED
(g)	$ \{x \in \mathbb{R} : x^2\} = 2$	TRUE,	FALSE,	NOT WELL-DEFINED

- 21. Give set builder notation for the set of positive rational numbers. Use symbols exclusively (not english words).
- 22. Give set builder notation for the set of subsets \mathbb{Z} which contain the element 0. Use symbols exclusively (not english words).
- 23. Give set builder notation for your favourite parabola, living in the Cartesian plane. Use symbols exclusively (not english words).
- 24. Give an example of set builder notation that represents the set {1}. Use symbols exclusively (not english words). Note: {1} is set notation, but is not set builder notation. Set builder means you have a colon in there somewhere, among other things.
- 25. Give an example of a set A which simultaneously satisfies all the following things: (a) |A| = 3; (b) $2 \in A$; and (c) $\{1\} \subseteq A$.
- 26. Let A = 1 and $B = \{1\}$. Circle the true fact(s):

$$A = B$$
, $A \subseteq B$, $A \in B$, $B \subseteq A$, $B \in A$, $|A| = 1$, $|B| = 1$

27. Let $A = \{\{1\}\}$ and $B = \{\{1\}, 1\}$. Circle the true fact(s):

$$A = B, \quad A \subseteq B, \quad A \in B, \quad B \subseteq A, \quad B \in A, \quad |A| = 1, \quad |B| = 1$$

28. Is the empty set a subset of every set? Explain why or why not.

29. Is the empty set an element of every set? Explain why or why not.

30. What is the cardinality of $\{\mathbb{R}\}$?

- 31. Give an example of a subset of $\{1, 3, 5, 7, 9\}$.
- 32. Give an example of an element of $\{\mathbb{Z}, \mathbb{N}, \mathbb{R}, \mathbb{Q}\}$.
- 33. What is the cardinality of \emptyset ?
- 34. What is the cardinality of $\{\emptyset\}$?
- 35. Circle those of the following which are TRUE:
 - (a) $\emptyset \subseteq \{3, 4\}$ (b) $\emptyset \in \{3, 4\}$ (c) $1 \subseteq \{1\}$ (d) $1 \in \{1\}$ (e) $|\{1, 3, 5\}| = 3$