N Example relations problems (Katherine E. Stange, Math 2001, CU Boulder)
X _: 1. Draw an arrow diagram of the relation R = {(1/2,3/4), (4/5,3/4),(1/3,1/2)} ontheset A = {1/2,1/3,1/4,3/4,4/5}.
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2. Give the ordered pairs notation and the arrow diagram for the relation C on A = {0, {3,4}, {1, 2}, {2}, {3} }.
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3. Give an example of a relation on the set A = {e}. Give it as a set of ordered pairs, or as an arrow diagram (your

choice).
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4. Now give another, different, example of a relation on the set A = {e}.
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5. For each of the following relations, determine if it is reflexive, symmetric, transitive and/or equivalence.

(a) The relation < on Z.

Reflexive? @/ NO
Symmetric? YES

. Transitive?@/ NO
e Equivalence? YES @
(b) The relation # on {0}.
. arow
e Reflexive? YES / o m
e Symmetric?(YES)/ NO e
o Transitive? / NO J&j—‘:—:‘: @
e Equivalence? YES /

(c) The relation {(e,e)} on {e}.
NO arrow diag:

(no avrows)

o Reflexive?
e Symmetric? / NO O

e Equivalence? (YES)/ NO

(d) The relation {(a,a), (b,b), (a,b),(b,a)} on {a,b,c,d}.
o Reflexive? YES / (c,ed wmissing
e Symmetric? / NO
e Transitive? / NO

e Equivalence? YES
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. Give a relation on the set {a,b, ¢, d} which is not reflexive and not symmetric. (You can give an arrow diagram or
a set of ordered pairs.)
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. What is the equivalence class of {1} under the equivalence relation “has the same cardinality as” on the set

2({1,2,3})?
51, 123, 33 T (s g 0
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. Draw an arrow diagram of the relation R = {(3,10), (4, 3), (3,2)} on the set A = {2,3,4,10}.
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. Give the ordered pairs notation and the arrow diagram for the relation = (mod 5) (in english, equivalence modulo
5) on A = {14,15,16,17, 18,19, 20}.
2
1 57 $ (M0, (1515), (te,le), (IF13), (18,18), (1, 1), (201209
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? (4, 1), (19, 14), (15,20, (20,15 E

. Give an example of a relation on the set A = {e, f}. Give it as a set of ordered pairs and as an arrow diagram.

o L S (e, (5,51 (Hare are mauy possile ausmers)
J 3
. For each of the following relations, determine if it is reflexive, symmetric, transitive and/or equivalence.

(a) The relation > on R.

e Reflexive?(YES)/ NO
Symmetric? YES
. Transitive?@/ NO

e Equivalence? YES @
(b) The relation # on Z.

Reflexive? YES / =1

Symmetric? / NO

Transitive? YES /®Q) | #F2, 2%+, =]
e Equivalence? YES /
(¢) The relation {(e,e), (f,e), (e, f)} on {e, f}.
o Reflexive? YES /@O £
Symmetric?@/ NO GO : o
Transitive? YES /(NO) (~§'—,e\,(€.§:) E:f‘( <) e £

Equivalence? YES /



9-5- -Hx) =xl+l

(d) The relation sends 0 to the same place on the set of all functions from R to R. omnd (et
Reflexive? @ NO Send O Jo |
Symmetric? / NO

Transitive? @ NO

Equivalence@ NO

12. Give a relation on the set {a,b, ¢} which is reflexive and not symmetric. (You can give an arrow diagram or a set
of ordered pairs; your choice.)
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13. What is the equivalence class of 2 under the equivalence relation has the same last digit on the set {x € Z : 0 <

z < 50}7
§2,12,22,32,42 % (evensthing ending m 2)

14. How many different equivalence classes are there in total, for the equivalence relation of the last question?
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15. Give an example of an equivalence relation with equivalence classes whose cardinalities are not all the same. Give
an example of two classes with different cardinalities.
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16. How many different equivalence relations are possible on a set of 3 elements? Why?
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17. Suppose A has cardinality n, and suppose there is an equivalence relation on A whose m equivalence classes all
have the same cardinality. What size are the equivalence classes?
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18. If R and S are two equivalence relations on a set A, is RU .S an equivalence relation on A? Why or why not?
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19. How many different partitions are there of a two-element set?

-—}/wo; ia\(oi An ?a'g) zbg

20. How many different equivalence relations are there on a two-element set?
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21. Give an example of a relation on Z which is not transitive.
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