Example relations problems (Katherine E. Stange, Math 2001, CU Boulder)

1. Draw an arrow diagram of the relation $R = \{(1/2, 3/4), (4/5, 3/4), (1/3, 1/2)\}$ on the set $A = \{1/2, 1/3, 1/4, 3/4, 4/5\}$.

2. Give the ordered pairs notation and the arrow diagram for the relation \subseteq on $A = \{\emptyset, \{3,4\}, \{1,2\}, \{2\}, \{3\}\}$.

- 3. Give an example of a relation on the set $A = \{e\}$. Give it as a set of ordered pairs, or as an arrow diagram (your choice).
- 4. Now give another, different, example of a relation on the set $A = \{e\}$.
- 5. For each of the following relations, determine if it is reflexive, symmetric, transitive and/or equivalence.
 - (a) The relation \leq on \mathbb{Z} .
 - Reflexive? YES / NO
 - Symmetric? YES / NO
 - Transitive? YES / NO
 - Equivalence? YES / NO
 - (b) The relation \neq on $\{0\}$.
 - Reflexive? YES / NO
 - Symmetric? YES / NO
 - Transitive? YES / NO
 - Equivalence? YES / NO
 - (c) The relation $\{(e, e)\}$ on $\{e\}$.
 - Reflexive? YES / NO
 - Symmetric? YES / NO
 - Transitive? YES / NO
 - Equivalence? YES / NO

(d) The relation $\{(a, a), (b, b), (a, b), (b, a)\}$ on $\{a, b, c, d\}$.

- Reflexive? YES / NO
- Symmetric? YES / NO
- Transitive? YES / NO
- Equivalence? YES / NO

- 6. Give a relation on the set $\{a, b, c, d\}$ which is not reflexive and not symmetric. (You can give an arrow diagram or a set of ordered pairs.)
- 7. What is the equivalence class of $\{1\}$ under the equivalence relation "has the same cardinality as" on the set $\mathscr{P}(\{1,2,3\})$?
- 8. Draw an arrow diagram of the relation $R = \{(3, 10), (4, 3), (3, 2)\}$ on the set $A = \{2, 3, 4, 10\}$.
- 9. Give the ordered pairs notation and the arrow diagram for the relation $\equiv \pmod{5}$ (in english, equivalence modulo 5) on $A = \{14, 15, 16, 17, 18, 19, 20\}$.
- 10. Give an example of a relation on the set $A = \{e, f\}$. Give it as a set of ordered pairs **and** as an arrow diagram.
- 11. For each of the following relations, determine if it is reflexive, symmetric, transitive and/or equivalence.
 - (a) The relation \geq on \mathbb{R} .
 - Reflexive? YES / NO
 - Symmetric? YES / NO
 - Transitive? YES / NO
 - Equivalence? YES / NO
 - (b) The relation \neq on \mathbb{Z} .
 - Reflexive? YES / NO
 - Symmetric? YES / NO
 - Transitive? YES / NO
 - Equivalence? YES / NO
 - (c) The relation $\{(e, e), (f, e), (e, f)\}$ on $\{e, f\}$.
 - Reflexive? YES / NO
 - Symmetric? YES / NO
 - Transitive? YES / NO
 - Equivalence? YES / NO

- (d) The relation sends 0 to the same place on the set of all functions from \mathbb{R} to \mathbb{R} .
 - Reflexive? YES / NO
 - Symmetric? YES / NO
 - Transitive? YES / NO
 - Equivalence? YES / NO
- 12. Give a relation on the set $\{a, b, c\}$ which is reflexive and not symmetric. (You can give an arrow diagram or a set of ordered pairs; your choice.)
- 13. What is the equivalence class of 2 under the equivalence relation has the same last digit on the set $\{x \in \mathbb{Z} : 0 \le x \le 50\}$?
- 14. How many different equivalence classes are there in total, for the equivalence relation of the last question?
- 15. Give an example of an equivalence relation with equivalence classes whose cardinalities are not all the same. Give an example of two classes with different cardinalities.

- 16. How many different equivalence relations are possible on a set of 3 elements? Why?
- 17. Suppose A has cardinality n, and suppose there is an equivalence relation on A whose m equivalence classes all have the same cardinality. What size are the equivalence classes?
- 18. If R and S are two equivalence relations on a set A, is $R \cup S$ an equivalence relation on A? Why or why not?

19. How many different partitions are there of a two-element set?

20. How many different equivalence relations are there on a two-element set?

21. Give an example of a relation on $\mathbb Z$ which is not transitive.