Example logic problems (Katherine E. Stange, Math 2001, CU Boulder)

1. Give the truth table for the expression P — Q.
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2. Give the truth table for the expression (PV Q) =
(e.g. ~ R). Note: this has 3 variables, so it should have 8 rows.

(~ R). For partial credit, show your intermediate columns
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3. Give an example of a boolean expression in two variables P and @ which is a tautology, in other words, in its truth
table, it evaluates to T' (true) for all inputs. Note: the expression must involve both variables somehow.
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4. Give an example of a boolean expression in two variables P and ) which is a contradiction, in other words, in its
truth table, it evaluates to F' (false) for all inputs. Note: the expression must involve both variables somehow.
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5. For each statement, give the converse and the contrapositive. It is important that the sentences you write make
english grammatical sense (e.g. don’t use a variable before introducing it).

(a) If x € Z is prime, then z is odd. /
o Converse: lf weZ is DA-A) Hen x i¢ prive.
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e Contrapositive: HL )L&Z is even, Hon x Ts VLO'(" Plf‘l\lvle..



(b) If X C S, then |X|=3or |X|=2.

e Converse: It \)([33 - \)(\-;Z Hen X ES.

e Contrapositive: \_S_ \y\ :#3 ond l>(l :I;Z) *H\Q/L % ¢ S

(c) If the graph G has n vertices, then it has at least one edge.

e Converse: \S— %L 6“]0"‘ G has oF

6. For each symbolic statement, determine if it is true or false.

(a) Vx € Z,z > 3.

(b) Ve € Z,3y € Z,x = —y.

(c) 3z € Q,2? =2.
(d) IX CR,3e X.
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7. For each english statement, give the same statement in symbolic notation (no english words), including such

things as quantifiers (3, V), boolean operators (~, A, V, =, <), etc.

(a) The number a is an even integer.

J xeZZ, a=2k.

(b) If z € Z, then x is even.
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(c) Every subset of S has cardinality less than 6.
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(d) All rational numbers have rational squares.
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8. Negate each of the following statements. Simplify your negations to a reasonable level for full credit (that is, don’t

just give “It is false that X” as the negation of X; this is correct but not enlightening; try to “move the negation
in” as far as you can, at the very least inside the quantifier.)

(a) There are no polynomials of degree 7.
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(b) All polynomials of degree 6 have exactly 6 roots in the complex numbers.
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(e) Every polynomial has at least one root.

Some. ?g%umh& has wo roots,

(f) If a polynomial has a root, then it has degree at least 1.
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9. True or False

(a) P==Q=PV(~Q) /\fm, A %Phﬂg P=2Q = WPHVR
B) ~(PVQ) =(~P)V(~Q)  Nope, bwk ~(PVQ\ = («HAEQN
(c) PV(QAR)=(PVQ)A(PVR) Mes.
10. Fill in the missing symbols in the blanks (choose from <, =, A and V):
(a) ~(P=Q)=P_ N (~Q)
(b) ~(PAQ)=(~P)_V (~Q)
(c) PA\(QVR)=(P_/N Q) N (P A R)
d) PoQ=(P=Q)_ A (Q=P)

11. Draw lines connecting expressions in the first column to their negations in the second column. Everything has a

pair.
P=Q (~P)A(~ Q)
(~P)=Q PA(~Q)
AP = Q)) (~P)V(~Q)
PAQ (~P) & (~Q)
PA(~Q) (~P)v@Q
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