Stirling Numbers of the First Kind

October 1, 2015

1 Getting to know the Stirling numbers

Definition 1. The (n, k) signless Stirling number of the first kind, denoted c(n, k), is equal to the number of permutations of [n] having exactly k cycles.

1. Compute the following:

c(3,0) =c(3,1) =c(3,2) =c(3,3) =c(3,4) =c(4,2) =

2. Describe the general patterns:

 $\begin{aligned} c(n,0) &= \\ c(n,1) &= \\ c(n,n) &= \\ \text{If } k > n \text{, then } c(n,k) = \end{aligned}$

2 Recurrence

Give a combinatorial proof of the following recurrence:

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k).$$

3 Generating Function

Let

$$G_n(x) := \sum_{k=0}^{\infty} c(n,k) x^k.$$

- 1. Why is $G_n(x)$ a polynomial?
- 2. Compute the following polynomials, and also give them in factored form
 - $G_1(x) =$ $G_2(x) =$ $G_3(x) =$
- 3. Write a conjecture, based on the data above: The generating function $G_n(x)$ is equal to the polynomial $P_n(x)$ defined by $P_n(x) =$
- 4. Based on your definition of $P_n(x)$ above, give a recurrence relation for $P_n(x)$ in terms of $P_{n-1}(x)$.
- 5. Using the recurrence relation of the last section, conjecture a recurrence for $G_n(x)$ in terms of $G_{n-1}(x)$.

6. Verify this recurrence by direct computation using the definition of $G_n(x)$.

7. Use the work you've done to show that $G_n(x) = P_n(x)$.

4 Something else

Permutations are functions, so they can be composed.

1. Compose a few permutations to get the feel for it.

2. Does composition commute?

3. Let σ^k denote composition of a permutation σ with itself k times. Prove that for any permutation of [n], there is some integer k > 0, so that σ^k is the identity.