Stirling Numbers of the First Kind

October 1, 2015

1 Getting to know the Stirling numbers

Definition 1. The (n, k) signless Stirling number of the first kind, denoted $c(n, k)$, is equal to the number of permutations of $[n]$ having exactly k cycles.

1. Compute the following:

$$
\begin{aligned}
& c(3,0)= \\
& c(3,1)= \\
& c(3,2)= \\
& c(3,3)= \\
& c(3,4)= \\
& c(4,2)=
\end{aligned}
$$

2. Describe the general patterns:

$$
\begin{aligned}
& c(n, 0)= \\
& c(n, 1)= \\
& c(n, n)= \\
& \text { If } k>n, \text { then } c(n, k)=
\end{aligned}
$$

2 Recurrence

Give a combinatorial proof of the following recurrence:

$$
c(n, k)=c(n-1, k-1)+(n-1) c(n-1, k) .
$$

3 Generating Function

Let

$$
G_{n}(x):=\sum_{k=0}^{\infty} c(n, k) x^{k} .
$$

1. Why is $G_{n}(x)$ a polynomial?
2. Compute the following polynomials, and also give them in factored form

$$
\begin{aligned}
& G_{1}(x)= \\
& G_{2}(x)= \\
& G_{3}(x)=
\end{aligned}
$$

3. Write a conjecture, based on the data above: The generating function $G_{n}(x)$ is equal to the polynomial $P_{n}(x)$ defined by $P_{n}(x)=$
4. Based on your definition of $P_{n}(x)$ above, give a recurrence relation for $P_{n}(x)$ in terms of $P_{n-1}(x)$.
5. Using the recurrence relation of the last section, conjecture a recurrence for $G_{n}(x)$ in terms of $G_{n-1}(x)$.
6. Verify this recurrence by direct computation using the definition of $G_{n}(x)$.
7. Use the work you've done to show that $G_{n}(x)=P_{n}(x)$.

4 Something else

Permutations are functions, so they can be composed.

1. Compose a few permutations to get the feel for it.
2. Does composition commute?
3. Let σ^{k} denote composition of a permutation σ with itself k times. Prove that for any permutation of $[n]$, there is some integer $k>0$, so that σ^{k} is the identity.
