Reciprocity obstructions in Apollonian circle packings and continued fractions

Summer Haag, Clyde Kertzer, James Rickards, Katherine E. Stange

SRNTC, March 10, 2024

Diophantine questions

Diophantine geometry: K or \mathcal{O}_K points on a variety

Diophantine orbits: K or \mathcal{O}_K points on an orbit $\Gamma \cdot \mathbf{v}_0$, for Γ an algebraic group

Orbits more generally: Γ not Zariski closed?

Closed geodesics, polygonal billiards, continued fractions, Apollonian circle packings.

Local-to-global

The Hasse principle holds for a variety V when

$$V(K) \neq \emptyset \quad \Longleftrightarrow \quad V(K_p) \neq \emptyset, \ \forall p$$

e.g. (Hasse-Minkowski) A quadratic form Q has non-trivial \mathbb{Q} -solutions iff it has non-trivial solutions in \mathbb{R} and \mathbb{Q}_p for all p

Many failures are captured by Brauer-Manin obstructions, which arise from reciprocity.

e.g. (Iskovskikh) $y^2 + z^2 = (3 - x^2)(x^2 - 2)$ because of quadratic reciprocity, -1 is a square mod *p* iff $p \equiv 1 \pmod{4}$

a theorem of Elizabeth and Descartes

Curvatures a, b, c, d of four mutually tangent circles (a Descartes quadruple) satisfy

 $2(a^{2} + b^{2} + c^{2} + d^{2}) = (a + b + c + d)^{2}.$

a theorem of Elizabeth and Descartes

Curvatures a, b, c, d of four mutually tangent circles (a Descartes quadruple) satisfy

 $2(a^{2} + b^{2} + c^{2} + d^{2}) = (a + b + c + d)^{2}.$

Given a, b, c, there are two possibilities d and d' satisfying

d+d'=2(a+b+c).

a theorem of Elizabeth and Descartes

Curvatures a, b, c, d of four mutually tangent circles (a Descartes quadruple) satisfy

$$2(a^{2} + b^{2} + c^{2} + d^{2}) = (a + b + c + d)^{2}.$$

Given a, b, c, there are two possibilities d and d' satisfying

d+d'=2(a+b+c).

Therefore

$$a, b, c, d \in \mathbb{Z} \implies \text{everything} \in \mathbb{Z}.$$

Curvatures

Question

What curvatures appear in a fixed primitive Apollonian circle packing?

Apollonian group

Acting on Descartes quadruples of curvatures:

Continued Fractions

Continued Fractions

Continued fraction semigroup:

$$\operatorname{SL}(2,\mathbb{Z})^{\geq 0} = \langle L, R \rangle^+ = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{PSL}_2(\mathbb{Z}) : a, b, c, d \geq 0 \right\}$$

Zaremba's Conjecture

Let $A \subseteq \mathbb{N}$ be a finite alphabet.

$$Z_A := \begin{cases} \exists p \in \mathbb{N}, \\ q \in \mathbb{N} : p/q \text{ has continued fraction expansion} \\ \text{using only coefficients from } A \end{cases}$$

Conjecture (Zaremba) Let $A = \{1, 2, 3, 4, 5\}$. Then $Z_A = \mathbb{N}$.

$$Z_A = \left\{ q \in \mathbb{Z} : \exists p \in \mathbb{N}, \begin{pmatrix} p \\ q \end{pmatrix} \in \Gamma_A \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}, \quad \Gamma_A := \left\langle \begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix} : a \in A \right\rangle^+.$$

Geometric considerations

Once -6, 11, 14, 15 are set, no room for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, ...

Analytic considerations

$\#\{C : \operatorname{curv}(C) < X\} \sim c_A X^{1.30568...}, \quad 1.30568... = \text{Hausdorff dim.}$

Analytic considerations

$$\#\{C : \operatorname{curv}(C) < X\} \sim c_A X^{1.30568...}, \quad 1.30568... = \operatorname{Hausdorff dim}.$$

So that multiplicities, on average, are around $X^{0.3}$.

(Boyd, McMullen, Kontorovich-Oh)

Curvatures modulo 5

Curvatures modulo 3

Algebraic considerations

Modulo 24, certain residue classes are missed.

type	allowed residues
(6,1)	0, 1, 4, 9, 12, 16
(6,5)	0, 5, 8, 12, 20, 21
(6,13)	0, 4, 12, 13, 16, 21
(6,17)	0, 8, 9, 12, 17, 20
(8,7)	3, 6, 7, 10, 15, 18, 19, 22
(8,11)	2, 3, 6, 11, 14, 15, 18, 23

Apollonian group (Version 2)

Acting on Descartes quadruples of circles via Möbius transformations (swaps on a 'base quadruple' move the whole packing).

 $\mathcal{A} < \mathrm{PSL}_2(\mathbb{Z}[i])$

There is an *exceptional isomorphism*

 $\operatorname{PGL}_2(\mathbb{C}) \to \operatorname{SO}_{1,3}^+(\mathbb{R}).$

Strong approximation

Reduction modulo a

$$\operatorname{SL}_2(\mathbb{Z}[i]) \to \operatorname{SL}_2(\mathbb{Z}[i]/\mathfrak{a})$$

surjects for all a.

There are only finitely many primes \mathfrak{p} where $\mathscr{A}/\mathfrak{p} \neq SL_2/\mathfrak{p}$.

Where this fails, there exists an $m_{\mathfrak{p}}$ for which if $M \in \mathrm{SL}_2(\mathbb{Z}[i]/\mathfrak{p}^m), m > m_{\mathfrak{p}}$ reduces mod $\mathfrak{p}^{m_{\mathfrak{p}}}$ to something in $\mathscr{A}/\mathfrak{p}^{m_{\mathfrak{p}}}$, then it reduces mod \mathfrak{p}^m to something in $\mathscr{A}/\mathfrak{p}^m$.

Reduced Cayley graphs \mathcal{A}/n form an expander family

A = adjacency matrix $\mathbf{x} =$ vector of weights on vertices

Markov chain for flow of mass to neighbours:

$$\mathbf{x} \mapsto \frac{1}{4}A\mathbf{x}, \quad (x_w) \mapsto \left(\frac{1}{4}\sum_{w \sim v} x_w\right).$$

Eigenvalues: $1 = \lambda_0 \ge \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{n-1} \ge -1$ Spectral gap: $\lambda_0 > \lambda_1$ controls the rate of mixing

Expander family: Graphs G_i with $\epsilon := \limsup_{i \to \infty} \lambda_{G_i, 1} < 1$

Do we get everything? A sort of CRT

if \mathcal{A}/q^n mix well for various prime powers,... ...and hit all residue classes ...

... do all combinations occur?

Possible thin group/semigroup orbit obstructions

- 1. Definiteness: Finite in one direction. (e.g., all positive)
- 2. Thinness: If growth rate is to slow to allow for increasing average multiplicity, can't expect density one.
- 3. Congruence: orbit $\cap \{a \pmod{m}\} = \emptyset$.
- 4. Inherited: Obstructions (such as Brauer-Manin) inherited from some larger algebraic set.

local-to-global

Conjecture (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden 2011):

In a primitive integral Apollonian circle packing,

- curvatures satisfy a congruence condition modulo 24, and
- ▶ all sufficiently large integers satisfying this condition appear.

local-to-global

Conjecture (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden 2011):

In a primitive integral Apollonian circle packing,

- curvatures satisfy a congruence condition modulo 24, and
- ▶ all sufficiently large integers satisfying this condition appear.

In other words,

$$\mathcal{K}(N) := \{n \le N : n \text{ is a curvature }\} = kN + O(1),$$

Here $k = \frac{\# \text{ admissible curvatures modulo } 24}{24}.$

 $\mathscr{K}(N) := \{ n \le N : n \text{ is a curvature } \}$

► Boyd, McMullen, Kontorovich-Oh: Number of circles of curvature less than *T* grows like $T^{\alpha+o(1)}$ ($\alpha = 1.30... =$ Hausdorff dim.)

 $\mathscr{K}(N) := \{n \le N : n \text{ is a curvature }\}$

► Boyd, McMullen, Kontorovich-Oh: Number of circles of curvature less than *T* grows like $T^{\alpha+o(1)}$ ($\alpha = 1.30... =$ Hausdorff dim.)

• Graham-Lagarias-Mallows-Wilks-Yan: $\mathscr{K}(N) \gg \sqrt{N}$.

 $\mathscr{K}(N) := \{n \le N : n \text{ is a curvature }\}$

► Boyd, McMullen, Kontorovich-Oh: Number of circles of curvature less than *T* grows like $T^{\alpha+o(1)}$ ($\alpha = 1.30... =$ Hausdorff dim.)

• Graham-Lagarias-Mallows-Wilks-Yan: $\mathscr{K}(N) \gg \sqrt{N}$.

► Sarnak: $\mathscr{K}(N) \gg \frac{N}{\sqrt{\log N}}$.

 $\mathscr{K}(N) := \{n \le N : n \text{ is a curvature }\}$

- ► Boyd, McMullen, Kontorovich-Oh: Number of circles of curvature less than *T* grows like $T^{\alpha+o(1)}$ ($\alpha = 1.30... =$ Hausdorff dim.)
- Graham-Lagarias-Mallows-Wilks-Yan: $\mathscr{K}(N) \gg \sqrt{N}$.
- ► Sarnak: $\mathscr{K}(N) \gg \frac{N}{\sqrt{\log N}}$.
- ▶ Bourgain-Fuchs: $\mathscr{K}(N) \gg N$ (positive density).

 $\mathscr{K}(N) := \{n \le N : n \text{ is a curvature }\}$

- ► Boyd, McMullen, Kontorovich-Oh: Number of circles of curvature less than *T* grows like $T^{\alpha+o(1)}$ ($\alpha = 1.30... =$ Hausdorff dim.)
- Graham-Lagarias-Mallows-Wilks-Yan: $\mathscr{K}(N) \gg \sqrt{N}$.
- ► Sarnak: $\mathscr{K}(N) \gg \frac{N}{\sqrt{\log N}}$.
- ▶ Bourgain-Fuchs: $\mathscr{K}(N) \gg N$ (positive density).
- ► Bourgain-Kontorovich: $\exists \eta > 0$, $\mathcal{K}(N) = kN + O(N^{1-\eta})$ (density one).
History

 $\mathscr{K}(N) := \{n \le N : n \text{ is a curvature }\}$

- ► Boyd, McMullen, Kontorovich-Oh: Number of circles of curvature less than *T* grows like $T^{\alpha+o(1)}$ ($\alpha = 1.30... =$ Hausdorff dim.)
- Graham-Lagarias-Mallows-Wilks-Yan: $\mathscr{K}(N) \gg \sqrt{N}$.
- ► Sarnak: $\mathscr{K}(N) \gg \frac{N}{\sqrt{\log N}}$.
- ▶ Bourgain-Fuchs: $\mathscr{K}(N) \gg N$ (positive density).
- ► Bourgain-Kontorovich: $\exists \eta > 0$, $\mathscr{K}(N) = kN + O(N^{1-\eta})$ (density one).
- ► Fuchs-S.-Zhang: $\exists \eta > 0$, $\mathcal{K}(N) = kN + O(N^{1-\eta})$ for a larger class of packings.

Tool: quadratic forms (Sarnak, Graham-Lagarias-Mallows-Wilks-Yan)

There is a bijection:

 $\left\{\begin{array}{c} \text{curvatures of circles tangent} \\ \text{to fixed mother circle } C \text{ of curvature } a \end{array}\right\} \longleftrightarrow \left\{f_C(x, y) - a : \gcd(x, y) = 1\right\}$

where f_C is a primitive integral binary quadratic form of discriminant $-4a^2$ associated to the 'mother circle'.

Bourgain-Fuchs: $\mathscr{K}(N) \gg N$

$$S_C = \{ \text{curvatures } \leq N \text{ represented by } f_C - a \}$$
 Then

$$\mathcal{K}(N) \geq \sum_{C \in \mathcal{S}} |S_C| - \sum_{C, C' \in \mathcal{S}} |S_C \cap S_{C'}|$$

Bound the left by $\gg \eta N$ and the right by $\ll \eta^2 N$.

Bourgain-Kontorovich: $\mathscr{K}(N) = cN + O(N^{1-\eta})$

Write

$$\mathcal{R}_{N}(n) = \sum_{\gamma \in \mathcal{F}_{T}} \sum_{\substack{x, y \in \mathbb{Z}, \\ X \leq x, y \leq 2X}} \mathbf{1}_{f_{\gamma}(x, y) = n}$$

Here, \mathscr{F}_T is a subset of \mathscr{A} growing with *T*, and $N = T^2 X^2$.

Goal: bound $\mathscr{R}_N(n) > 0$ for almost all n.

Tool: Hardy-Littlewood Circle Method.

Fuchs-Sanden computed curvatures up to:

```
10^8 for (-1,2,2,3)
5 · 10<sup>8</sup> for (-11,21,24,28)
```

and observed that the multiplicity of a curvature was tending to increase.

Images from Fuchs, Sanden.

Curvature *c* is *missing* in \mathcal{A} if curvatures $\equiv c \pmod{24}$ appear in \mathcal{A} but *c* does not.

Curvature *c* is *missing* in \mathcal{A} if curvatures $\equiv c \pmod{24}$ appear in \mathcal{A} but *c* does not.

Fuchs-Sanden computed curvatures up to:

$$10^8$$
 for (-1,2,2,3)
5 · 10⁸ for (-11,21,24,28)

Curvature *c* is *missing* in \mathscr{A} if curvatures $\equiv c \pmod{24}$ appear in \mathscr{A} but *c* does not.

Fuchs-Sanden computed curvatures up to:

$$10^{8}$$
 for (-1,2,2,3)
5 · 10⁸ for (-11,21,24,28)

For (-11, 21, 24, 28), there were still a small number (up to 0.013%) of missing curvatures in the range $(4 \cdot 10^8, 5 \cdot 10^8)$ for residue classes 0, 4, 12, 16 (mod 24).

Summer 2023 REU

▶ Fix a pair of curvatures, and study what packings contain them.

Summer 2023 REU

- ▶ Fix a pair of curvatures, and study what packings contain them.
- Plot: for an admissible pair of residue classes modulo 24, black dot if no packing has that pair.

Summer 2023 REU

- ▶ Fix a pair of curvatures, and study what packings contain them.
- Plot: for an admissible pair of residue classes modulo 24, black dot if no packing has that pair.
- ► Local-global: finitely many black dots on any row or column.

Typical graph

Figure: Residue classes 0 (mod 24) and 12 (mod 24) (Summer Haag)

One weird graph

0 12 17 111 1	- 1.0						
16 -		0					
24	and the second						
32 -	and a second						
48		0					
56 -		0 -					
64							
80		16					
88	- 0.8	10 4					
104	a sea a s						
112 -		74					
120	and a second	27 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
128 -							
144	and a second	32 _ '					
152 -		52					
168	- 0.6	10					
176 -		40					
184 -		10					
200 -	and a second	40					
208 -		48					
216 -							
232 -		56					
240 -		- 50					
298 -	- 0.4						
264 -		64					
272 -		04					
288	a second						
296 -		72 -					
304 - 312 -		12 -					
320 -		0.0					
328 -		80					
330 -	0.2						
352 -		00					
360	and a second						
376 -							
384 -		96					
392 -		50 -					
408 -							
416		104					

Figure: Residue classes 0 (mod 24) and 8 (mod 24) (Summer Haag)

differences between successive missing curvatures

differences between successive missing curvatures

The conjecture is false

Theorem (Haag-Kertzer-Rickards-S.)

The Apollonian circle packing \mathcal{A} generated by quadruple (-3, 5, 8, 8) has no square curvatures.

1. Fix circle \mathscr{C} of curvature *n*; tangent curvatures $f_{\mathscr{C}}(x,y) - n$ of discriminant $-4n^2$

Fix circle 𝒞 of curvature n; tangent curvatures f_𝔅(x, y)−n of discriminant −4n²
 Modulo n and equivalence, values are Ax².

- Fix circle 𝒞 of curvature n; tangent curvatures f_𝔅(x, y)−n of discriminant −4n²
 Modulo n and equivalence, values are Ax².
- 3. Kronecker symbol $\left(\frac{Ax^2}{n}\right)$ cannot take both values 1 and -1.

- 1. Fix circle \mathscr{C} of curvature *n*; tangent curvatures $f_{\mathscr{C}}(x, y) n$ of discriminant $-4n^2$ 2. Modulo *n* and equivalence values are $4n^2$
- 2. Modulo *n* and equivalence, values are Ax^2 .
- 3. Kronecker symbol $\left(\frac{Ax^2}{n}\right)$ cannot take both values 1 and -1.
- 4. Define $\chi_2(\mathscr{C}) = 1$ or -1 according to above.
- 5. Note: $\chi_2(\mathscr{C}) = \left(\frac{a}{n}\right)$ for a curvature *a* coprime and tangent to \mathscr{C} .

A packing has a 'residuosity'

1. Suppose that $\mathscr{C}_1, \mathscr{C}_2 \in \mathscr{A}$ are tangent, having non-zero coprime curvatures a and b respectively.

A packing has a 'residuosity'

- 1. Suppose that $\mathscr{C}_1, \mathscr{C}_2 \in \mathscr{A}$ are tangent, having non-zero coprime curvatures a and b respectively.
- 2. Quadratic reciprocity:

$$\chi_2(\mathscr{C}_1)\chi_2(\mathscr{C}_2) = \left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = 1 \implies \chi_2(\mathscr{C}_1) = \chi_2(\mathscr{C}_2).$$

A packing has a 'residuosity'

- 1. Suppose that $\mathscr{C}_1, \mathscr{C}_2 \in \mathscr{A}$ are tangent, having non-zero coprime curvatures *a* and *b* respectively.
- 2. Quadratic reciprocity:

$$\chi_2(\mathscr{C}_1)\chi_2(\mathscr{C}_2) = \left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = 1 \implies \chi_2(\mathscr{C}_1) = \chi_2(\mathscr{C}_2).$$

Any two circles in A are connected by a path of pairwise coprime curvatures.
 So χ₂(C) is independent of the choice of circle C.

There are no squares in the packing

1. In base quadruple (-3, 5, 8, 8), compute

$$\chi_2(\mathscr{A}) = \left(\frac{8}{5}\right) = \left(\frac{3}{5}\right) = -1.$$

2. So no circle can be tangent to a square.

New invariants of a packing

$\chi_2: \{\text{circles}\} \rightarrow \{\pm 1\}$

constant across a packing

New invariants of a packing

$$\chi_2: \{\text{circles}\} \rightarrow \{\pm 1\}$$

constant across a packing

 χ_4 : {circles in packing of type (6, 1) or (6, 17)} \rightarrow {1, *i*, -1, -*i*} satisfies $\chi_4(\mathscr{C})^2 = \chi_2(\mathscr{C})$, constant across a packing.

New invariants of a packing

$$\chi_2: \{\text{circles}\} \rightarrow \{\pm 1\}$$

constant across a packing

 χ_4 : {circles in packing of type (6, 1) or (6, 17)} \rightarrow {1, *i*, -1, -*i*} satisfies $\chi_4(\mathscr{C})^2 = \chi_2(\mathscr{C})$, constant across a packing.

The values of χ_2 and χ_4 determine the quadratic and quartic obstructions respectively.

Obstructions for types $(x, k, \chi_2(\mathcal{A}), \chi_4(\mathcal{A}))$

Туре	Quadratic	Quartic	L-G false	L-G open
(6,1,1,1)				0, 1, 4, 9, 12, 16
(6, 1, 1, -1)		$n^4, 4n^4,$	0,1,4,	
		$9n^4, 36n^4$	9, 12, 16	
(6, 1, -1)	$n^2, 2n^2,$		0,1,4,	
	$3n^2, 6n^2$		9, 12, 16	
(6,5,1)	$2n^2, 3n^2$		0, 8, 12	5,20,21
(6, 5, -1)	$n^2, 6n^2$		0,12	5, 8, 20, 21
(6,13,1)	$2n^2, 6n^2$		0	4, 12, 13, 16, 21
(6,13,-1)	$n^2, 3n^2$		0,4,12,16	13,21
(6, 17, 1, 1)	$3n^2, 6n^2$	$9n^4, 36n^4$	0,9,12	8,17,20
(6, 17, 1, -1)	$3n^2, 6n^2$	$n^4, 4n^4$	0,9,12	8, 17, 20
(6,17,-1)	$n^2, 2n^2$		0, 8, 9, 12	17,20
(8,7,1)	$3n^2, 6n^2$		3,6	7, 10, 15, 18, 19, 22
(8,7,-1)	$2n^2$		18	3, 6, 7, 10, 15, 19, 22
(8,11,1)				2, 3, 6, 11, 14, 15, 17, 23
(8,11,-1)	$2n^2, 3n^2, 6n^2$		2, 3, 6, 18	11, 14, 15, 23

New conjecture

Sporadic set $S_{\mathcal{A}}$ of AWOL curvatures: missing but not because of congruence or reciprocity obstuctions.

New conjecture

Sporadic set $S_{\mathcal{A}}$ of AWOL curvatures: missing but not because of congruence or reciprocity obstuctions.

Conjecture (Haag-Kertzer-Rickards-S.) Let \mathcal{A} be a primitive Apollonian circle packing. Then $S_{\mathcal{A}}$ is finite.

- ► James wrote efficient C/PARI/GP code for missing curvatures (GitHub).
- ▶ computed many $S_{\mathscr{A}}(N)$
- \blacktriangleright 10¹⁰ in a few hours; 10¹² possible

Possible thin group/semigroup orbit obstructions

- 1. Definiteness: Finite in one direction. (e.g., all positive)
- 2. Thinness: If growth rate is to slow to allow for increasing average multiplicity, can't expect density one.
- 3. Congruence: orbit $\cap \{a \pmod{m}\} = \emptyset$.
- 4. Inherited: Obstructions (such as Brauer-Manin) inherited from some larger algebraic set.
- 5. Reciprocity: Families ruled out by reciprocity laws.

What about Zaremba?

#{ denominators
$$\leq N$$
} ~ $C_A N^{2\delta_A}$, δ_A = Hausdorff dimension.
 $\delta_A > 1/2 \implies$ average multiplicity $\rightarrow \infty$.

Conjecture (Hensley) If $\delta_A > 1/2$, then D_A contains all but finitely many positive integers.

What about Zaremba?

#{ denominators
$$\leq N$$
} ~ $C_A N^{2\delta_A}$, δ_A = Hausdorff dimension.
 $\delta_A > 1/2 \implies$ average multiplicity $\rightarrow \infty$.

Conjecture (Hensley)

If $\delta_A > 1/2$, then D_A contains all but finitely many positive integers.

$$A = \{1, 2, 3, 4, 5\}: \delta_A \approx 0.8368;$$

$$A = \{1, 2, 3, 4\}: \delta_A \approx 0.7889;$$

$$A = \{1, 2, 3\}: \delta_A \approx 0.7057;$$

$$A = \{1, 2\}: \delta_A \approx 0.5313;$$

What about Zaremba?

#{ denominators $\leq N$ } ~ $C_A N^{2\delta_A}$, δ_A = Hausdorff dimension. $\delta_A > 1/2 \implies$ average multiplicity $\rightarrow \infty$.

Conjecture (Hensley)

If $\delta_A > 1/2$, then D_A contains all but finitely many positive integers.

- ► $A = \{1, 2, 3, 4, 5\}$: $\delta_A \approx 0.8368$;
- $A = \{1, 2, 3, 4\}: \delta_A \approx 0.7889;$
- $A = \{1, 2, 3\}: \delta_A \approx 0.7057;$
- ► $A = \{1, 2\}: \delta_A \approx 0.5313;$
- ► $A = \{2, 4, 6, 8, 10\}$: $\delta_A \approx 0.5174$;
- Bourgain-Kontorovich: this last alphabet misses 3 (mod 4), disproving Hensley's conjecture.

Reciprocity obstructions in $SL(2,\mathbb{Z})^{\geq 0}$

subsemigroups of $SL(2,\mathbb{Z})^{\geq 0} \quad \longleftrightarrow \quad restricted continued fraction expansions$

A fascinating subset:

$$\Psi := \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_1^{\geq 0}(4) : \left(\frac{a}{b}\right) = 1 \right\}.$$

where

$$\Gamma_1^{\geq 0}(4) = \left\{ \gamma \in \mathrm{SL}(2,\mathbb{Z})^{\geq 0} : \gamma \equiv \left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix}\right) \pmod{4} \right\}.$$
Reciprocity obstructions in $SL(2,\mathbb{Z})^{\geq 0}$

$$\Psi := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1^{\geq 0}(4) : \left(\frac{a}{b} \right) = 1 \right\}.$$

Proposition

 Ψ is a semigroup.

Reciprocity obstructions in $SL(2,\mathbb{Z})^{\geq 0}$

$$\Psi := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1^{\geq 0}(4) : \left(\frac{a}{b} \right) = 1 \right\}.$$

Proposition

 Ψ is a semigroup.

Fascinating consequence: If we say a rational p/q is "Kronecker positive" if $\left(\frac{p}{q}\right) = 1$, then this property is preserved under concatenation of continued fraction expansions (*).

Reciprocity obstructions in $SL(2,\mathbb{Z})^{\geq 0}$

$$\Psi := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1^{\geq 0}(4) : \left(\frac{a}{b} \right) = 1 \right\}.$$

Theorem (Rickards-S.)

Let x, y be positive coprime integers where y is odd and $\left(\frac{x}{y}\right) = -1$. Then the numerators and denominators of the orbit $\Psi \cdot \begin{pmatrix} x \\ y \end{pmatrix}$ cannot be squares. Once again, quadratic reciprocity.

Reciprocity obstructions in thin semigroups

$$\Psi_1 := \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} \right\rangle^+$$

► thin, $\delta_1 \approx 1.4386$

congruence obstructions modulo 4

Theorem (Rickards-S.)

Numerators of $\Psi_1 \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ have no congruence obstructions, yet cannot be square.

Conjecture

Every non-square integer n > 10569 occurs as a numerator in $\Psi_1 \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. (data up to 10^7)

In terms of continued fractions

Theorem (Rickards-S.)

Let

$$S = \left\{ \frac{p}{q} = [0; a_1, a_2, \dots, a_n, 1, 1, 2] : a_i \in \{4, 8, 12, \dots, 128\} \right\}.$$

Then the limit set has has Hausdorff dimension > 1/2, no congruence obstruction on the denominators, but no square denominators.

Disproves a conjecture of Bourgain and Kontorovich.

Thank you

Tables

Packing	Туре	N	$ S_{\mathcal{A}}(N) $	$\max(S_{\mathscr{A}}(N))$	$\approx \frac{N}{\max(S_{\mathcal{A}}(N))}$
(0,0,1,1)	(6, 1, 1, 1)	10 ¹⁰	215	1199820	8334.58
(-12, 16, 49, 49)		1011	275276	5542869468	18.04
(-20, 36, 49, 49)		10 ¹²	2014815	55912619880	17.89
(-8, 12, 25, 25)	(6, 1, 1, -1)	10 ¹⁰	47070	517280220	19.33
(-12, 25, 25, 28)		1011	238268	5919707820	16.89
(-15, 24, 40, 49)		$2 \cdot 10^{11}$	639149	12692531688	15.75
(-15, 28, 33, 40)	(6, 1, -1)	10 ¹⁰	80472	820523160	12.19
(-20, 33, 52, 57)		10 ¹¹	240230	4127189100	24.23
(-23, 40, 57, 60)		10 ¹¹	392800	8689511520	11.51
(-4,5,20,21)	(6,5,1)	10 ¹⁰	3659	32084460	311.68
(-16, 29, 36, 45)		10 ¹⁰	80256	927211800	10.79
(-19, 36, 44, 45)		10 ¹¹	177902	3603790320	27.75
(-3, 5, 8, 8)	(6, 5, -1)	10 ¹⁰	676	3122880	3202.17
(-12, 21, 29, 32)		10 ¹⁰	30347	312225420	32.03
(-19, 32, 48, 53)		$2.5\cdot10^{10}$	168264	2286209460	10.94

Tables

Packing	Туре	Ν	$ S_{\mathcal{A}}(N) $	$\max(S_{\mathscr{A}}(N))$	$\approx \frac{N}{\max(S_{\mathcal{A}}(N))}$
(-3, 4, 12, 13)	(6, 13, 1)	10 ¹⁰	731	7354464	1359.72
(-12, 21, 28, 37)		1011	234386	3470731680	28.81
(-11, 16, 36, 37)		10 ¹⁰	20748	226988340	44.06
(-8, 13, 21, 24)	(6, 13, -1)	10 ¹⁰	5273	45348900	220.51
(-11, 21, 24, 28)		10 ¹⁰	21003	176441136	56.68
(-20, 37, 45, 52)		10 ¹¹	229356	4079861484	24.51
(-16, 32, 33, 41)	(6, 17, 1, 1)	10 ¹⁰	81777	841440840	11.88
(-7, 8, 56, 57)		10 ¹⁰	55057	595231740	16.80
(-16,20,81,81)		10 ¹²	1075024	26983035480	37.06
(-4, 8, 9, 9)	(6, 17, 1, -1)	10 ¹⁰	2057	10742460	930.89
(-7, 9, 32, 32)		10 ¹⁰	34916	367956840	27.18
(-15, 32, 32, 33)		10 ¹¹	585942	8505627180	11.76
(-7, 12, 17, 20)	(6,17,-1)	10 ¹⁰	3744	17141220	583.39
(-12, 17, 41, 44)		10 ¹⁰	31851	270186456	37.01
(-15, 24, 41, 44)		10 ¹⁰	80106	803343900	12.45

Tables

Packing	Туре	N	$ S_{\mathcal{A}}(N) $	$\max(S_{\mathscr{A}}(N))$	$\approx \frac{N}{\max(S_{\mathcal{A}}(N))}$
(-5,7,18,18)	(8,7,1)	10 ¹⁰	16417	86709570	115.33
(6, 10, 15, 19)		10 ¹⁰	24305	133977255	74.64
(-9, 18, 19, 22)		10 ¹⁰	14866	82815750	120.75
(-2, 3, 6, 7)	(8,7,-1)	10 ¹⁰	236	429039	23307.90
(-5, 6, 30, 31)		10 ¹⁰	19695	97583070	102.48
(-14, 27, 31, 34)		$2 \cdot 10^{10}$	99294	1643827935	12.17
(-1, 2, 2, 3)	(8,11,1)	10 ¹⁰	61	97287	102788.66
(-9, 14, 26, 27)		10 ¹⁰	17949	85926675	116.38
(-10, 18, 23, 27)		10 ¹⁰	25944	124625694	80.24
(-6, 11, 14, 15)	(8, 11, -1)	10 ¹⁰	3381	20149335	496.29
(-10, 14, 35, 39)		4 · 10 ¹⁰	256228	2934238515	13.63
(-13, 23, 30, 38)		10 ¹⁰	71341	598107510	16.72

Apollonian group (Version 2)

