Supersingular graphs and orientations

Katherine E. Stange

AMMCS, August 16th, 2023

vertices: elliptic curves / 𝔽 p up to isomorphism (given as j-invariants)
 edges: isogenies of degree ℓ up to equivalence (given as kernels)

identifying φ with dual $\hat{\varphi}$: an undirected $\ell + 1$ regular graph (away from j = 0, 1728)

endomorphism rings

An elliptic curve $/\overline{\mathbb{F}}_p$ is either:

- ▶ ordinary: $End(E) \cong O$, order in an imaginary quadratic field
- ▶ supersingular: $\operatorname{End}(E) \cong \mathfrak{O}$ order in a quaternion algebra $B_{p,\infty}$ ramified at p and ∞

ordinary graph structure

End(E) an order in an imaginary quadratic field K

Each component is a volcano:

- Fixed K so that all $\operatorname{End}(E) \subseteq K$.
- ▶ Rim: curves with $\operatorname{End}(E) \cong \mathcal{O}_k$ an order of *K*
- level *n*: curves with $\operatorname{End}(E) \cong \mathcal{O}_{\ell^n k}$ of index ℓ^n in \mathcal{O}_k .

volcano: edges are ascending, descending or horizontal

supersingular graph structure

 $\operatorname{End}(E)$ an order in $B_{p,\infty}$

One random-looking component:

around *p*/12 curves, all defined over 𝔽_{p²}
 ℓ + 1-regular

we typically assume j = 1728 is in the graph (or another curve with known End(*E*))

supersingular isogeny graphs are Ramanujan

 $\frac{1}{\ell+1}A$ = normalized adjacency matrix, operator for flow of mass between vertices

supersingular isogeny graphs are Ramanujan

 $\frac{1}{\ell+1}A$ = normalized adjacency matrix, operator for flow of mass between vertices

eigenvalues: $1 = \lambda_0 \ge \lambda_1 \ge \cdots \ge -1$.

uniform distribution is eigenvector with eigenvalue $\lambda_0 = 1$

supersingular isogeny graphs are Ramanujan

 $\frac{1}{\ell+1}A$ = normalized adjacency matrix, operator for flow of mass between vertices

eigenvalues: $1 = \lambda_0 \ge \lambda_1 \ge \cdots \ge -1$.

uniform distribution is eigenvector with eigenvalue $\lambda_0 = 1$

spectral gap: $\max_{i>1} |\lambda_i| \le \frac{2\sqrt{\ell}}{\ell+1} < 1$

called a *Ramanujan* graph.

 \Rightarrow well-mixing: a random path of length $O(\log(p))$ will reach all vertices uniformly

Hard problems and cryptographic use

p is cryptographic size (size of graph), ℓ is fixed and small (degree)

p is cryptographic size (size of graph), ℓ is fixed and small (degree)
Given j₁, j₂, find a path in graph between them

p is cryptographic size (size of graph), ℓ is fixed and small (degree)

- Given j_1 , j_2 , find a path in graph between them
- Given j, find a path in graph to 1728

p is cryptographic size (size of graph), ℓ is fixed and small (degree)

- Given j_1 , j_2 , find a path in graph between them
- Given j, find a path in graph to 1728
- Given j, find End(E_j), either by generating endomorphisms, or abstract isomorphism type

supersingular isogeny-based cryptography: CSIDH

j-invariants vs. endomorphism rings

labelled with *j*-invariants ????

labelled with endomorphism rings can compare & navigate *j*-invariants vs. endomorphism rings

labelled with *j*-invariants ????

labelled with endomorphism rings can compare & navigate

Hard problem: computing the endomorphism ring
 With endomorphism rings, Kohel-Lauter-Petit-Tignol algorithm finds path (uses ideals of orders)

An elliptic curve $/\overline{\mathbb{F}}_p$ is either:

- ▶ ordinary: $End(E) \cong O$, an order in an imaginary quadratic field
- ▶ supersingular: $\operatorname{End}(E) \cong \mathfrak{O}$ an order in a quaternion algebra $B_{p,\infty}$ ramified at p and ∞

An elliptic curve $/\overline{\mathbb{F}}_p$ is either:

- ▶ ordinary: $End(E) \cong O$, an order in an imaginary quadratic field
- ▶ supersingular: $\operatorname{End}(E) \cong \mathfrak{O}$ an order in a quaternion algebra $B_{p,\infty}$ ramified at p and ∞

Supersingular case: Every element of $B_{p,\infty} \setminus \mathbb{Q}$ is quadratic of negative discriminant \Rightarrow many imaginary quadratic fields $\iota : K \hookrightarrow B_{p,\infty}$ (many ways!) $\Rightarrow \mathfrak{O} \cap \iota(K)$ is an order in an imaginary quadratic field

A pair (E, ι) where $\iota: K \to \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(E) \cong B_{p,\infty}$ is a *K*-oriented elliptic curve.

An elliptic curve $/\overline{\mathbb{F}}_p$ is either:

- ▶ ordinary: $End(E) \cong O$, an order in an imaginary quadratic field
- ▶ supersingular: $\operatorname{End}(E) \cong \mathfrak{O}$ an order in a quaternion algebra $B_{p,\infty}$ ramified at p and ∞

Supersingular case: Every element of $B_{p,\infty} \setminus \mathbb{Q}$ is quadratic of negative discriminant \Rightarrow many imaginary quadratic fields $\iota : K \hookrightarrow B_{p,\infty}$ (many ways!) $\Rightarrow \mathfrak{O} \cap \iota(K)$ is an order in an imaginary quadratic field

A pair (E, ι) where $\iota: K \to \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{End}(E) \cong B_{p,\infty}$ is a *K*-oriented elliptic curve.

One explicit endomorphism is equivalent to an orientation

Path finding in the supersingular isogeny graph

Knowledge of endomorphism ring enables path finding

Path finding in the supersingular isogeny graph

Knowledge of endomorphism ring enables path finding

What about knowledge of a single endomorphism?

Path finding in the supersingular isogeny graph

Knowledge of endomorphism ring enables path finding

What about knowledge of a single endomorphism?

Our tool: orientations
K-oriented supersingular ℓ -isogeny graphs

vertices: K-oriented elliptic curves (E, ι) over 𝔽_p up to isomorphism
edges: isogenies of degree ℓ up to equivalence, respecting the orientations

identifying φ with dual $\hat{\varphi}$: an undirected $\ell + 1$ regular graph

ordinary graph structure

End(E) an order in an imaginary quadratic field K

Each component is a volcano:

- Fixed K so that all $\operatorname{End}(E) \subseteq K$.
- ▶ Rim: curves with $\operatorname{End}(E) \cong \mathcal{O}_k$ an order of *K*
- level *n*: curves with $\operatorname{End}(E) \cong \mathcal{O}_{\ell^n k}$ of index ℓ^n in \mathcal{O}_k .

volcano: edges are ascending, descending or horizontal

K-oriented graph structure

 $\operatorname{End}(E)\cap\iota(K)$ an order in an imaginary quadratic field K

Each component is a volcano:

- Fixed K so that all $\operatorname{End}(E) \subseteq K$.
- ▶ Rim: curves with $\operatorname{End}(E)\cap\iota(K) \cong \mathcal{O}_k$ an order of *K*
- level *n*: curves with $\operatorname{End}(E)\cap \iota(K) \cong \mathcal{O}_{\ell^n k}$ of index ℓ^n in \mathcal{O}_k .

volcano: edges are ascending, descending or horizontal

Big picture

Forgetting orientation

Forgetting orientation

Forgetting orientation

A rim goes to an isogeny cycle:

a closed walk of the same length (may repeat vertices/edges)

▶ no backtracking

▶ not a repeat of a smaller closed walk

Rims and isogeny cycles

Theorem (Arpin, Chen, Lauter, Scheidler, S., Tran) Let $\ell < p$ be primes. Let r > 2 be an integer. Let \mathcal{G}_{ℓ} be the supersingular ℓ -isogeny graph over $\overline{\mathbb{F}}_{p}$. Then there is a bijection:

Rims and isogeny cycles

Theorem (Arpin, Chen, Lauter, Scheidler, S., Tran) Let $\ell < p$ be primes. Let r > 2 be an integer. Let \mathscr{G}_{ℓ} be the supersingular ℓ -isogeny graph over $\overline{\mathbb{F}}_p$. Then there is a bijection:

$$\left\{ \begin{matrix} \text{isogeny cycles of length} \\ r \text{ in } \mathcal{G}_{\ell} \end{matrix} \right\} \longleftrightarrow \left\{ \begin{matrix} \text{rims of size } r \text{ in the union} \\ \text{of all oriented} \\ \text{ss } \ell \text{-isogeny volcanoes} \\ up \text{ to conjugation} \end{matrix} \right\}$$

- not canonical (because of extra automorphisms)
- \blacktriangleright self-conjugate rims occur when p is ramified

The class group action

► A set:

$$SS_{\mathcal{O}}^{pr}(p) := \{(E,\iota) : \iota \text{ is primitive } \}$$

where *primitive* means $\iota(K) \cap \operatorname{End}(E) = \iota(\mathcal{O})$.

► A set:

$$SS^{pr}_{\mathcal{O}}(p) := \{(E,\iota) : \iota \text{ is primitive } \}$$

where *primitive* means $\iota(K) \cap \operatorname{End}(E) = \iota(\mathcal{O})$.

▶ A group: the class group $Cl(\mathcal{O})$.

► A set:

$$SS_{\mathcal{O}}^{pr}(p) := \{(E,\iota) : \iota \text{ is primitive } \}$$

where *primitive* means $\iota(K) \cap \operatorname{End}(E) = \iota(\mathcal{O})$.

• A group: the class group $Cl(\mathcal{O})$.

► An action:

$$[\mathfrak{a}] \cdot E = E/E[\mathfrak{a}], \quad E[\mathfrak{a}] = \bigcap_{\alpha \in \mathfrak{a}} \ker(\alpha).$$

► A set:

$$SS_{\mathscr{O}}^{pr}(p) := \{(E,\iota) : \iota \text{ is primitive }\}$$

where *primitive* means $\iota(K) \cap \operatorname{End}(E) = \iota(\mathcal{O})$.

► A group: the class group Cl(𝒴).

An action:

$$[\mathfrak{a}] \cdot E = E/E[\mathfrak{a}], \quad E[\mathfrak{a}] = \bigcap_{\alpha \in \mathfrak{a}} \ker(\alpha).$$

Action is free, with 1 or 2 orbits, and horizontal.

$$\mathcal{O}_{\mathsf{K}} \qquad \qquad \mathbb{Z} + 2 \mathcal{O}_{\mathsf{K}} \qquad \qquad \mathbb{Z} + 3 \mathcal{O}_{\mathsf{K}} \qquad \qquad \mathbb{Z$$

Descends from the action on curves over \mathbb{C} .

Class group action

If a has norm ℓ , then the blue cycles *are* the oriented ℓ -isogeny volcano rims.

Counting isogeny cycles We expect (Ramanujan graphs) as $r \rightarrow \infty$:

```
# of isogeny cycles of length r \sim \frac{\ell^r}{2r}
```

Counting isogeny cycles We expect (Ramanujan graphs) as $r \rightarrow \infty$:

of isogeny cycles of length
$$r \sim \frac{\ell'}{2r}$$

Theorem (Arpin, Chen, Lauter, Scheidler, S., Tran)

of isogeny cycles of length
$$r = \frac{1}{r} \sum_{\mathcal{O} \in \mathscr{I}_r} \epsilon_{\mathcal{O}} h_{\mathcal{O}}$$
,

where $\epsilon_{\mathcal{O}} \in \{1, 2\}$ and $h_{\mathcal{O}}$ is the class number, and

$$\mathcal{I}_r = \left\{ \begin{array}{ll} p \text{ does not split in the field containing } \mathcal{O} \\ p \text{ does not divide the conductor of } \mathcal{O} \\ p \text{ does not divide the conductor of } \mathcal{O} \\ \mathcal{O} \text{ is an } \ell \text{-fundamental order,} \\ (\ell) = \mathfrak{l} \overline{\mathfrak{l}} \text{ splits in } \mathcal{O}, \\ and [\mathfrak{l}] \text{ has order } r \text{ in } \mathrm{Cl}(\mathcal{O}). \end{array} \right\}.$$

To find all possible α of norm ℓ^r in orders of \mathscr{I}_r :

Splitting of ℓ bounds discriminant

- Splitting of ℓ bounds discriminant
- Find all representations $N(\alpha) = \ell^r$

- ▶ Splitting of ℓ bounds discriminant
- Find all representations $N(\alpha) = \ell^r$
- Check splitting of ℓ , p in $\mathbb{Q}(\alpha)$

- ▶ Splitting of ℓ bounds discriminant
- Find all representations $N(\alpha) = \ell^r$
- Check splitting of ℓ , p in $\mathbb{Q}(\alpha)$
- Find all orders $\mathbb{Z}[\alpha] \subseteq \mathcal{O} \subseteq \mathbb{Q}(\alpha)$

- ▶ Splitting of ℓ bounds discriminant
- Find all representations $N(\alpha) = \ell^r$
- Check splitting of ℓ , p in $\mathbb{Q}(\alpha)$
- Find all orders $\mathbb{Z}[\alpha] \subseteq \mathcal{O} \subseteq \mathbb{Q}(\alpha)$
- Check if $\mathfrak{l} \mid (\ell)$ has order r in $Cl(\mathcal{O})$

To find all possible α of norm ℓ^r in orders of \mathscr{I}_r :

- ▶ Splitting of ℓ bounds discriminant
- Find all representations $N(\alpha) = \ell^r$
- Check splitting of ℓ , p in $\mathbb{Q}(\alpha)$
- Find all orders $\mathbb{Z}[\alpha] \subseteq \mathcal{O} \subseteq \mathbb{Q}(\alpha)$
- Check if $\mathfrak{l} \mid (\ell)$ has order r in $Cl(\mathcal{O})$

Then:

To find all possible α of norm ℓ^r in orders of \mathscr{I}_r :

- ▶ Splitting of ℓ bounds discriminant
- Find all representations $N(\alpha) = \ell^r$
- Check splitting of ℓ , p in $\mathbb{Q}(\alpha)$
- Find all orders $\mathbb{Z}[\alpha] \subseteq \mathcal{O} \subseteq \mathbb{Q}(\alpha)$
- Check if $\mathfrak{l} \mid (\ell)$ has order r in $Cl(\mathcal{O})$

Then:

For each α , its orbit under the action of l is a oriented volcano rim

To find all possible α of norm ℓ^r in orders of \mathscr{I}_r :

- ▶ Splitting of ℓ bounds discriminant
- Find all representations $N(\alpha) = \ell^r$
- Check splitting of ℓ , p in $\mathbb{Q}(\alpha)$
- Find all orders $\mathbb{Z}[\alpha] \subseteq \mathcal{O} \subseteq \mathbb{Q}(\alpha)$
- Check if $l \mid (\ell)$ has order r in $Cl(\mathcal{O})$

Then:

- For each α , its orbit under the action of l is a oriented volcano rim
- ► This gives an isogeny cycle.

To find all possible α of norm ℓ^r in orders of \mathscr{I}_r :

- ▶ Splitting of ℓ bounds discriminant
- Find all representations $N(\alpha) = \ell^r$
- Check splitting of ℓ , p in $\mathbb{Q}(\alpha)$
- Find all orders $\mathbb{Z}[\alpha] \subseteq \mathcal{O} \subseteq \mathbb{Q}(\alpha)$
- Check if $l \mid (\ell)$ has order r in $Cl(\mathcal{O})$

Then:

- For each α , its orbit under the action of l is a oriented volcano rim
- This gives an isogeny cycle.
- ▶ Watch for conjugation.

Counting isogeny cycles: upper bound

Corollary (Arpin, Chen, Lauter, Scheidler, S., Tran)

of isogeny cycles of length
$$r < \frac{2\pi e^{\gamma}\log(4\ell)}{3}\ell^r(\log r + \log\log(2\sqrt{\ell}) + 7/3) + O(\ell^{3r/4}\log r)$$

as $r \to \infty$, where $\gamma = 0.577...$ is the Euler-Mascheroni constant. Tools: Möbius inversion and known class group estimates.

Counting isogeny cycles: upper bound

Semilog plot, $p = 3361, \ell = 2$ (green), $p = 3229, \ell = 3$ (red) compared to dominant term

Relationship between class groups

Navigating the graph with one endomorphism

The view from one vertex

 \blacktriangleright Have an orientation ι

► Taking a step along isogeny φ , have a derived orientation $\varphi \circ \iota \circ \varphi^{-1}$

The view from one vertex

• Have an orientation ι

- Taking a step along isogeny φ , have a derived orientation $\varphi \circ \iota \circ \varphi^{-1}$
- Can detect if it is horizontal, ascending or descending
 - either by checking if you can divide by ℓ ;
 - or using a method of eigenvalues

The view from one vertex

• Have an orientation ι

Taking a step along isogeny φ , have a derived orientation $\varphi \circ \iota \circ \varphi^{-1}$

- Can detect if it is horizontal, ascending or descending
 - either by checking if you can divide by ℓ ;
 - or using a method of eigenvalues

Upshot: can tell which way is up on the oriented volcano

Path-finding idea

Path-finding idea

Path-finding idea

Path-finding idea

Path-finding idea

See Mingjie Chen's talk at 16:40 in Computational Number Theory.