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`-isogeny graphs

É vertices: elliptic curves /Fp up to isomorphism (given as j -invariants)
É edges: isogenies of degree ` up to equivalence (given as kernels)

identifying ϕ with dual bϕ: an undirected `+ 1 regular graph
( away from j = 0,1728 )



endomorphism rings

An elliptic curve /Fp is either:
É ordinary: End(E)∼= O , order in an imaginary quadratic field
É supersingular: End(E)∼=O order in a quaternion algebra Bp,∞ ramified at p and∞



ordinary graph structure
End(E) an order in an imaginary quadratic field K

Each component is a volcano:

É Fixed K so that all End(E)⊆K .
É Rim: curves with End(E)∼= Ok an order of K
É level n: curves with End(E)∼= O`n k of index `n in Ok .

volcano: edges are ascending, descending or horizontal



supersingular graph structure

End(E) an order in Bp,∞

One random-looking component:

É around p/12 curves, all defined over Fp2

É `+ 1-regular

we typically assume j = 1728 is in the graph (or another curve with known End(E))



supersingular isogeny graphs are Ramanujan

1
`+1 A = normalized adjacency matrix, operator for flow of mass between vertices

eigenvalues: 1= λ0 ≥ λ1 ≥ · · · ≥ −1.

uniform distribution is eigenvector with eigenvalue λ0 = 1

spectral gap: maxi>1 |λi | ≤
2
p
`

`+1 < 1

called a Ramanujan graph.

⇒ well-mixing: a random path of length O(log(p)) will reach all vertices uniformly
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Hard problems and cryptographic use



Hard problems for supersingular `-isogeny graphs

p is cryptographic size (size of graph), ` is fixed and small (degree)

É Given j1, j2, find a path in graph between them
É Given j , find a path in graph to 1728
É Given j , find End(E j ), either by generating endomorphisms, or abstract

isomorphism type
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j -invariants vs. endomorphism rings

labelled with j -invariants
????

labelled with endomorphism rings
can compare & navigate

É Hard problem: computing the endomorphism ring
É With endomorphism rings, Kohel-Lauter-Petit-Tignol algorithm finds path (uses

ideals of orders)
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Orientations

An elliptic curve /Fp is either:
É ordinary: End(E)∼= O , an order in an imaginary quadratic field
É supersingular: End(E)∼=O an order in a quaternion algebra Bp,∞ ramified at p and
∞

Supersingular case: Every element of Bp,∞ \Q is quadratic of negative discriminant
⇒many imaginary quadratic fields ι : K ,→ Bp,∞ (many ways!)
⇒O∩ ι(K) is an order in an imaginary quadratic field

A pair (E , ι) where ι : K→Q⊗Z End(E)∼= Bp,∞ is a K-oriented elliptic curve.

One explicit endomorphism is equivalent to an orientation
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Path finding in the supersingular isogeny graph

Knowledge of endomorphism ring enables path finding

What about knowledge of a single endomorphism?

Our tool: orientations
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K -oriented supersingular `-isogeny graphs

É vertices: K -oriented elliptic curves (E , ι) over Fp up to isomorphism
É edges: isogenies of degree ` up to equivalence, respecting the orientations

identifying ϕ with dual bϕ: an undirected `+ 1 regular graph



ordinary graph structure
End(E) an order in an imaginary quadratic field K

Each component is a volcano:

É Fixed K so that all End(E)⊆K .
É Rim: curves with End(E)∼= Ok an order of K
É level n: curves with End(E)∼= O`n k of index `n in Ok .
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K -oriented graph structure
End(E)∩ι(K) an order in an imaginary quadratic field K

Each component is a volcano:

É Fixed K so that all End(E)⊆K .
É Rim: curves with End(E)∩ι(K)∼= Ok an order of K
É level n: curves with End(E)∩ι(K)∼= O`n k of index `n in Ok .

volcano: edges are ascending, descending or horizontal



Big picture
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Forgetting orientation

A rim goes to an isogeny cycle:
É a closed walk of the same length (may repeat vertices/edges)
É no backtracking

É not a repeat of a smaller closed walk



Rims and isogeny cycles

Theorem (Arpin, Chen, Lauter, Scheidler, S., Tran)
Let ` < p be primes. Let r > 2 be an integer.
Let G` be the supersingular `-isogeny graph over Fp .
Then there is a bijection:

¦

isogeny cycles of length
r in G`

©

//

(rims of size r in the union
of all oriented

ss `-isogeny volcanoes
up to conjugation

)

oo

forget orientationoo

compose around cycle

to get endomorphism hence orientation
//



Rims and isogeny cycles

Theorem (Arpin, Chen, Lauter, Scheidler, S., Tran)
Let ` < p be primes. Let r > 2 be an integer.
Let G` be the supersingular `-isogeny graph over Fp .
Then there is a bijection:

¦

isogeny cycles of length
r in G`

©

//

(rims of size r in the union
of all oriented

ss `-isogeny volcanoes
up to conjugation

)

oo

É not canonical (because of extra automorphisms)
É self-conjugate rims occur when p is ramified



The class group action



Class group action for imaginary quadratic order O

É A set:
SS p r
O (p) := {(E , ι) : ι is primitive }

where primitive means ι(K)∩End(E) = ι(O ).

É A group: the class group Cl(O ).
É An action:

[a] · E = E/E[a], E[a] = ∩α∈a ker(α).

Action is free, with 1 or 2 orbits, and horizontal.

Descends from the action on curves over C.
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Class group action

If a has norm `, then the blue cycles are the oriented `-isogeny volcano rims.



Counting isogeny cycles
We expect (Ramanujan graphs) as r →∞:

# of isogeny cycles of length r ∼ `
r

2r

Theorem (Arpin, Chen, Lauter, Scheidler, S., Tran)

# of isogeny cycles of length r =
1
r

∑

O∈Ir

εO hO ,

where εO ∈ {1,2} and hO is the class number, and

Ir =



















imaginary quadratic orders O :

p does not split in the field containing O
p does not divide the conductor of O
O is an `-fundamental order,

(`) = l̄l splits in O ,
and [l] has order r in Cl(O ).
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Algorithm to count isogeny cycles

To find all possible α of norm `r in orders of Ir :

É Splitting of ` bounds discriminant
É Find all representations N (α) = `r

É Check splitting of `, p inQ(α)
É Find all orders Z[α]⊆O ⊆Q(α)
É Check if l | (`) has order r in Cl(O )

Then:
É For each α, its orbit under the action of l is a oriented volcano rim
É This gives an isogeny cycle.
É Watch for conjugation.
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Counting isogeny cycles: upper bound

Corollary (Arpin, Chen, Lauter, Scheidler, S., Tran)

# of isogeny cycles of length r <
2πeγ log(4`)

3
`r (log r+log log(2

p
`)+7/3)+O(`3r/4 log r )

as r →∞, where γ = 0.577 . . . is the Euler-Mascheroni constant.
Tools: Möbius inversion and known class group estimates.



Counting isogeny cycles: upper bound

Semilog plot, p = 3361,`= 2 (green), p = 3229,`= 3 (red) compared to dominant term
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Relationship between class groups



Navigating the graph with one endomorphism



The view from one vertex

É Have an orientation ι
É Taking a step along isogeny ϕ, have a derived orientation ϕ ◦ ι ◦ϕ−1

É Can detect if it is horizontal, ascending or descending
É either by checking if you can divide by `;
É or using a method of eigenvalues

Upshot: can tell which way is up on the oriented volcano
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Path-finding idea

See Mingjie Chen’s talk at 16:40 in Computational Number Theory.


