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(-isogeny graphs

L
s=‘*,/ .
N/
o Il.::\x\ ! o
A

> vertices: elliptic curves /Fp up to isomorphism (given as j-invariants)
> edges: isogenies of degree £ up to equivalence (given as kernels)

identifying ¢ with dual @: an undirected ¢ + 1 regular graph
(away from j =0,1728 )



endomorphism rings

An elliptic curve / Fp is either:
» ordinary: End(E) 22 0, order in an imaginary quadratic field

> supersingular: End(£) = O order in a quaternion algebra B,, , ramified at p and oo



ordinary graph structure

End(E) an order in an imaginary quadratic field K

Each component is a volcano:

horia
e—

b/—‘bﬁ

| b\ ©

\o \ O,

» Fixed K so that all End(E£) CK.
» Rim: curves with End(E) 2 0, an order of K
» level n: curves with End(E) = 0}, of index {” in 0.

volcano: edges are ascending, descending or horizontal



supersingular graph structure
End(E)an orderin B,

One random-looking component:

> around p/12 curves, all defined over ¥,
» ( + 1-regular

we typically assume j = 1728 is in the graph (or another curve with known End(E))



supersingular isogeny graphs are Ramanujan
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7074 = normalized adjacency matrix, operator for flow of mass between vertices
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supersingular isogeny graphs are Ramanujan

1 . . . .
7074 = normalized adjacency matrix, operator for flow of mass between vertices

eigenvalues: 1=A; > A, >--->—1.
uniform distribution is eigenvector with eigenvalue A, =1

spectral gap: max;.|4;| < Zfl <1

called a Ramanujan graph.

= well-mixing: a random path of length O(log(p)) will reach all vertices uniformly



Hard problems and cryptographic use
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p is cryptographic size (size of graph), £ is fixed and small (degree)
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Hard problems for supersingular £-isogeny graphs

p is cryptographic size (size of graph), £ is fixed and small (degree)
» Given jj, J,, find a path in graph between them
» Given j, find a path in graph to 1728

> Given j, find End(E;), either by generating endomorphisms, or abstract
isomorphism type
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supersingular isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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isogeny-based cryptography: CSIDH
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j-lnvariants vs.

—
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labelled with j-invariants
222?

endomorphism rings

labelled with endomorphism rings
can compare & navigate



j-invariants vs. endomorphism rings

S
\o a
labelled with j-invariants labelled with endomorphism rings
2227 can compare & navigate

» Hard problem: computing the endomorphism ring
» With endomorphism rings, Kohel-Lauter-Petit-Tignol algorithm finds path (uses
ideals of orders)

~

€
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An elliptic curve /F » 1s either:
» ordinary: End(E) 2 0, an order in an imaginary quadratic field

> supersingular: End(E) = O an order in a quaternion algebra B, , ramified at p and
00



Orientations

An elliptic curve /F » 1s either:
» ordinary: End(E) 2 0, an order in an imaginary quadratic field

> supersingular: End(E) = O an order in a quaternion algebra B, , ramified at p and
00

Supersingular case: Every element of B,, , \ Q is quadratic of negative discriminant
= many imaginary quadratic fields ¢ : K — B, ., (many ways!)
= O N¢(K) is an order in an imaginary quadratic field

A pair (E,¢) where t: K — Q®y, End(E) = B, , is a K-oriented elliptic curve.



Orientations

An elliptic curve /F » 1s either:
» ordinary: End(E) 2 0, an order in an imaginary quadratic field

> supersingular: End(E) = O an order in a quaternion algebra B, , ramified at p and
)

Supersingular case: Every element of B,, , \ Q is quadratic of negative discriminant
= many imaginary quadratic fields ¢ : K — B, ., (many ways!)
= O N¢(K) is an order in an imaginary quadratic field

A pair (E,¢) where t: K — Q®y, End(E) = B, , is a K-oriented elliptic curve.

One explicit endomorphism is equivalent to an orientation



Path finding in the supersingular isogeny graph

Knowledge of endomorphism ring enables path finding



Path finding in the supersingular isogeny graph
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What about knowledge of a single endomorphism?



Path finding in the supersingular isogeny graph

Knowledge of endomorphism ring enables path finding
What about knowledge of a single endomorphism?

Our tool: orientations



K-oriented supersingular ¢-isogeny graphs
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> vertices: K-oriented elliptic curves (E,¢) over F » Up to isomorphism

> edges: isogenies of degree ¢ up to equivalence, respecting the orientations

identifying ¢ with dual @: an undirected £ + 1 regular graph



ordinary graph structure

End(E) an order in an imaginary quadratic field K

Each component is a volcano:

horia
e—

b/—‘bﬁ

| b\ ©

\o \ O,

» Fixed K so that all End(E£) CK.
» Rim: curves with End(E) 2 0, an order of K
» level n: curves with End(E) = 0}, of index {” in 0.

volcano: edges are ascending, descending or horizontal



K-oriented graph structure

End(E)N¢(K) an order in an imaginary quadratic field K

Each component is a volcano:

hora.
—
b/‘“‘b‘ﬁ
l ©
5 Yk

» Fixed K so that all End(E£) CK.
» Rim: curves with End(E)N(K) = 0, an order of K
» level n: curves with End(E)N«(K) = 0y, of index £” in 0.

volcano: edges are ascending, descending or horizontal



Big picture
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Forgetting orientation
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Forgetting orientation
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Forgetting orientation

A rim goes to an isogeny cycle:
» aclosed walk of the same length (may repeat vertices/edges)
» no backtracking

> not a repeat of a smaller closed walk =



Rims and isogeny cycles

Theorem (Arpin, Chen, Lauter, Scheidler, S., Tran)
Let { < p be primes. Let r > 2 be an integer.
Let 9, be t}?e m[{qﬂfigulﬂr {-isogeny graph over ¥ .
Then there is a bijection:
rims of size v in the union
{ isogeny cycles of length} of all oriented

rinY, ss {-isogeny volcanoes
up to conjugation

forget orientation

compose around cycle

to get endomorphism hence orientation



Rims and isogeny cycles

Theorem (Arpin, Chen, Lauter, Scheidler, S., Tran)

Let { < p be primes. Let v > 2 be an integer.
Let Yy be the supersingular {-isogeny graph over I ,.
Then there is a bijection:

rims of size v in the union
{isogeny cycles of length} of all oriented
rin¥Y, ss {-isogeny volcanoes
up to conjugation

» not canonical (because of extra automorphisms)

» self-conjugate rims occur when p is ramified



The class group action



Class group action for imaginary quadratic order 0

> A set:
SSgr(p) :={(£,¢) ¢ is primitive }

where primitive means «(K) NEnd(E) = «(0).
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» A group: the class group CI(0).



Class group action for imaginary quadratic order 0

> A set:
SSgr(p) :={(£,¢) ¢ is primitive }
where primitive means «(K) NEnd(E) = «(0).
» A group: the class group CI(0).
» An action:

[a]-E=E/E[a], E[a]=N,ker(a).

- aca



Class group action for imaginary quadratic order 0

> Aset:
SSET(p):={(E,¢): ¢is primitive }
where primitive means «(K) NEnd(E) = «(0).
» A group: the class group CI(0).

» An action:

[a]-E=E/E[a], E[a]= ker(a).

aea

Action is free, with 1 or 2 orbits, and horizontal.

ﬂ\&)ﬂi Rm

Descends from the action on curves over C.



Class group action
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If a has norm £, then the blue cycles are the oriented ¢-isogeny volcano rims.



Counting isogeny cycles
We expect (Ramanujan graphs) as » — oo:

r

# of isogeny cycles of length r ~ ﬁ—
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Counting isogeny cycles
We expect (Ramanujan graphs) as » — oo:

r

# of isogeny cycles of length r ~ ﬁ—
;
Theorem (Arpin, Chen, Lauter, Scheidler, S., Tran)

1
# of isogeny cycles of length r = — Z €ohg,
" ocy,

where € ; €{1,2} and b, is the class number, and

p does not split in the field containing O
p does not divide the conductor of O
&, = { imaginary quadratic orders O : 0 is an -fundamental order,
(0)=splitsin O,
and [] has order r in Cl(O).



Algorithm to count isogeny cycles

To find all possible @ of norm ¢7 in orders of ., :
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Algorithm to count isogeny cycles

To find all possible @ of norm ¢7 in orders of ., :
» Splitting of £ bounds discriminant
» Find all representations N(a) =¢"
» Check splitting of £, p in Q(a)
» Find all orders Z[a] € 0 C Q(a)
» Check if [ (¢) has order r in CI(0)



Algorithm to count isogeny cycles

To find all possible @ of norm ¢7 in orders of ., :
» Splitting of £ bounds discriminant
» Find all representations N(a) =¢"
» Check splitting of £, p in Q(a)
» Find all orders Z[a] € 0 C Q(a)
» Check if [ (¢) has order r in CI(0)
Then:



Algorithm to count isogeny cycles

To find all possible @ of norm ¢7 in orders of ., :
» Splitting of £ bounds discriminant
» Find all representations N(a) =¢"
» Check splitting of £, p in Q(a)
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» For each ¢, its orbit under the action of [ is a oriented volcano rim



Algorithm to count isogeny cycles

To find all possible @ of norm ¢7 in orders of ., :
» Splitting of £ bounds discriminant
» Find all representations N(a) =¢"
» Check splitting of £, p in Q(a)
» Find all orders Z[a] € 0 C Q(a)
» Check if [ (¢) has order r in CI(0)
Then:
» For each ¢, its orbit under the action of [ is a oriented volcano rim

» This gives an isogeny cycle.



Algorithm to count isogeny cycles

To find all possible @ of norm ¢7 in orders of ., :
» Splitting of £ bounds discriminant
» Find all representations N(a) =¢"
» Check splitting of £, p in Q(a)
» Find all orders Z[a] € 0 C Q(a)
» Check if [ (¢) has order r in CI(0)
Then:
» For each ¢, its orbit under the action of [ is a oriented volcano rim
» This gives an isogeny cycle.
» Watch for conjugation.



Counting isogeny cycles: upper bound

Corollary (Arpin, Chen, Lauter, Scheidler, S., Tran)

27e’ log(44) o

# of isogeny cycles of length r < (log r+loglog(2V0)+7/3)+0(£>"/*log r)

as v — 00, where y =0.577 ... is the Euler-Mascheroni constant.

Tools: Mobius inversion and known class group estimates.



Counting isogeny cycles: upper bound

Semilog plot, p =3361,{ =2 (green), p = 3229,¢ =3 (red) compared to dominant term
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27e’ log(44)

# of isogeny cycles of length r < (" (logr + loglog(Z\/Z) +7/3)4+ 0> *log r)



Relationship between class groups




Navigating the graph with one endomorphism



The view from one vertex

» Have an orientation ¢

» Taking a step along isogeny ¢, have a derived orientation g o0 ¢!



The view from one vertex

» Have an orientation ¢

» Taking a step along isogeny ¢, have a derived orientation g o0 ¢!
» Can detect if it is horizontal, ascending or descending

» either by checking if you can divide by ¢;

» or using a method of eigenvalues



The view from one vertex

» Have an orientation ¢

» Taking a step along isogeny ¢, have a derived orientation g o0 ¢!
» Can detect if it is horizontal, ascending or descending

» either by checking if you can divide by ¢;

» or using a method of eigenvalues

Upshot: can tell which way is up on the oriented volcano



Path-finding idea

U, o FB L) (B, Ls) (€,



Path-finding idea

(13, LW W%, L (Mg, L) €,9



Path-finding idea

(13, LW W%, L (Mg, L) €,9



Path-finding idea

[ ]
W%, L) (B, L) (e,0)

(11, v



Path-finding idea

See Mingjie Chen’s talk at 16:40 in Computational Number Theory.



