Numberscope

Katherine Stange

University of Colorado, Boulder
Experimental Mathematics Lab
JMM, January 18, 2020

Follow along at math.katestange.net/illustration/numberscope

Experimental Mathematics Lab at CU Boulder

Part of a growing movement of Geometry Labs United.
Outreach, experimentation, computation, visualization, pedagogy, research.

Numberscope Contributors

Khaled Allen
Isabel Anaya
Abdullatif Khalid Abduljaleel
Tobias Aldape
Sebastian Bozlee
Ang Li
Theodore Lincke
Josiah Martinez
Willem Mirkovich
Katherine Stange
Daniel H. Taylor

On－Line Encyclopedia of Integer Sequences

The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation．

$$
\begin{aligned}
& 013627 \text { THE ON-LINE ENCYCLOPEDIA } \\
& { }_{23} \mathrm{OF}_{12}^{12} \text { OF INTEGER SEQUENCES }{ }^{\text {© }} \\
& 10221121
\end{aligned}
$$

founded in 1964 by N．J．A．Sloane
Thanks to everyone who made a donation during our annual appeal！ To see the list of donors，or make a donation，see the OEIS Foundation home page．

The On－Line Encyclopedia of Integer Sequences ${ }^{\circledR}$（OEIS ${ }^{\circledR}$ ）

Enter a sequence，word，or sequence number：
$\frac{1,2,3,6,11,23,47,106,235}{\text { Search Hints Welcome Video }}$

For more information about the Encyclopedia，see the Welcome page．

```
            Languages: English Shqip العرu Bangla Български Català 中文(正體字,简化字(1),箇化字 (2))
```



```
Lookup｜Welcome｜Wiki｜Register｜Music｜Plot \(2 \mid\) Demos｜Index｜Browse｜More｜WebCam Contribute new seq．or comment｜Format｜Style Sheet \｜Transforms｜Superseeker｜Recent The OEIS Community｜Maintained by The OEIS Foundation Inc．
```


On-Line Encyclopedia of Integer Sequences: The Movie

Log A002487

The OEIS Movie

Numberscope: the dream

An online tool that easily pairs a sequence (e.g. input OEIS number) with a visualization tool (e.g. graph).

Audience: researchers, citizen scientists, artists, anyone.
Community extensible: open source, community wiki, API for creating and contributing visualization methods, sequence input etc.

What might we visualize, though?

growth rate

divisibility properties
self-similarity
fractal nature
substring statistics
modular periodicity

Turtle on a Sequence

0: 90 degrees, 1 step

1: 270 degrees, 2 steps

Sequence: $0,1,0,0, \ldots$

Turtle on a Sequence

0: 90 degrees, 1 step

1: 270 degrees, 2 steps

Sequence: $0,1,0,0, \ldots$

Turtle on a Sequence

0 : 90 degrees, 1 step

1: 270 degrees, 2 steps

Sequence: $0,1,0,0, \ldots$

Turtle on a Sequence

0 : 90 degrees, 1 step

1: 270 degrees, 2 steps

Sequence: $0,1,0,0, \ldots$

Turtle on a Sequence

0: 90 degrees, 1 step

1: 270 degrees, 2 steps

Sequence: 0, 1, 0, $0, \ldots$

Turtle on a Sequence

Hofstadter Figure-Figure
A005228
$3,7,12,18,26,35,45,56,69,83,98,114, \ldots$
press h for help

9960 length (f/g; v/b)
3
modulus (m/n; o/p)

Turtle Rules:
press a/x to add/remove

Term Angle Speed Steps Speed
$\begin{array}{llllll}0 & 137.0 & 0.000 & 3.0 & 0.00\end{array}$
$\begin{array}{lllll}1 & 0.0 & 0.000 & 2.0 & 0.00\end{array}$
$\begin{array}{lllll}2 & 105.0 & 0.000 & 1.0 & 0.00\end{array}$

Turtle on a Sequence


```
2-adic val of Z
0,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,\ldots
    press h for help
9960 length (f/g; v/b)
2 modulus (m/n;o/p)
Turtle Rules:
press a/x to add/remove
Term Angle Speed Steps Speed
\begin{tabular}{ll|l|lll}
0 & 120.0 & 0.000 & 8.0 & 0.00
\end{tabular}
\(\begin{array}{lllll}1 & 24.0 & 0.000 & 7.0 & 0.00\end{array}\)
```


Turtle on a Sequence


```
Number of divisors of n
A000005
2,2,3,2,4,2,4,3,4,2,6,2,4,4,5,2,6,2,\ldots
    press h for help
    9960 length (f/g; v/b)
    2 modulus (m/n;o/p)
    Turtle Rules:
press a/x to add/remove
    Term Angle Speed Steps Speed
0
0
1
```


Turtle on a Sequence

Thue-Morse

A010060
$1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0, \ldots$
press h for help

9960 length (f/g; v/b)
2 modulus (m/n; o/p)
Turtle Rules:
press a/x to add/remove
Term Angle Speed Steps Speed

| 0 | 0.0 | 0.000 | 1.0 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}1 & 60.0 & 0.000 & 0.0 & 0.00\end{array}$

Turtle on a Sequence

Continued fraction Pi
A001203
$7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2, \ldots$
press h for help

9960 length (f / g; v/b)
0 modulus ($\mathrm{m} / \mathrm{n} ; \mathrm{o} / \mathrm{p}$)

Turtle Rules:
press a / x to add/remove

| Term | Angle | | | Speed | Steps |
| :--- | :--- | :--- | :--- | :--- | :--- | Speed

Self-Similarity Telescope

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
a_{n}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
a_{n+1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
a_{n+2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}
a_{n+3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}
a_{n+4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}

contraction $=1$
translation $=1$

Self-Similarity Telescope

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
$a_{2 n}$	a_{2}	a_{4}	a_{6}	a_{8}	a_{10}
$a_{2 n+3}$	a_{5}	a_{7}	a_{9}	a_{11}	a_{13}
$a_{2 n+6}$	a_{8}	a_{10}	a_{12}	a_{14}	a_{16}
$a_{2 n+9}$	a_{11}	a_{13}	a_{15}	a_{17}	a_{19}
$a_{2 n+12}$	a_{14}	a_{16}	a_{18}	a_{20}	a_{22}

contraction $=2$
translation $=3$

Self-Similarity Telescope

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
a_{n}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
a_{n+1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
a_{n+2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}
a_{n+3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}
a_{n+4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}

Compare the highlighted term with the column header.
Colour according to (3 modes):

- Distance similarity: $\left|a_{i}-a_{j}\right|$
- Divisibility detection: $\operatorname{gcd}\left(a_{i}, a_{j}\right)$
- p-adic similarity: $\left|v_{p}\left(a_{i}\right)-v_{p}\left(a_{j}\right)\right|$

Self-Similarity Telescope

Integers			
$0,1,2,3,4,5,6,7,8,9,10,11, \ldots$			
modulus (m/n; j/k; z)			
1.000 contract (up/down; $\mathrm{i} / \mathrm{o} ; \mathrm{c}$)			
1.00 translate (right/left; s/d; t)			
20 fade (f/g)			
0.00 frequency			
indices compared: values compared:	ared: 146	224	diff=78
	red: 146		
	224		
difference: 78			
e/r change seq; y toggle random; u jiggle; h help			

Self-Similarity Telescope

Self-Similarity Telescope

 (2)
 Hf: (1) , wi,

Prime numbers

A000040
$3,5,7,11,13,17,19,23,29,31, \ldots$
Distance similarity (x to change)
$38 \quad$ modulus ($\mathrm{m} / \mathrm{n} ; \mathrm{j} / \mathrm{k} ; \mathrm{z}$) 1.000 contract (up/down; i/o; c)

8
0.05
frequency
indices compared: 39
values compared: 179
499
320
difference:
e/r change seq; y toggle random; u jiggle; h help

Self-Similarity Telescope

Self-Similarity Telescope

Self-Similarity Telescope

Self-Similarity Telescope

Self-Similarity Telescope

Self-Similarity Telescope

Self-Similarity Telescope

Prime Filter

	2	3	5	7	11
$a_{n}+2$	0	0	0	0	0
$a_{n}+1$	0	0	0	0	0
a_{n}	0	0	0	0	0
$a_{n}-1$	0	0	0	0	0
$a_{n}-2$	0	0	0	0	0

At each coordinate (prime, sequence), we record with a darker colour if the first N terms are frequently divisible by the prime.

Precisely, a histogram of the sum of the valuations $\bmod p$, or the frequency of $0 \bmod p$ (two modes).

Prime Filter

Ramanujan Tau

$-24,252,-1472,4830,-6048,-16744,84480,-113643,-115920,534612,-370944,-577738,401856,1217160,987136,-6905934,2727432,1066$
Valuations, total sum
Terms beginning at 0 , ending at 8000
Press h for help

7680

Prime Filter

Beatty (floor n*(sqrt2))
$1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24,25,26,28,29,31,32,33,35,36,38,39,41,42,43,45,46,48,49,50, \ldots$
Valuations, total sum
Terms beginning at 0 , ending at 10000

Chaos Game

> Start at origin...

At each term, step halfway to the corresponding corner.

Chaos Game

Start at origin...

At each term, step halfway to the corresponding corner.

Chaos Game

Start at origin...

At each term, step halfway to the corresponding corner.

Chaos Game

Start at origin...

At each term, step halfway to the corresponding corner.

Chaos Game

Start at origin...

At each term, step halfway to the corresponding corner.

Chaos Game

Start at origin...

At each term, step halfway to the corresponding corner.

Prime Filter

Random Modulo 4

$2,3,3,3,2,0,3,1,3,0,3,3,3,1,1, \ldots$

Modulus (m / n): 4
Fractional step (u/i): 0.50
Number of Walkers (t / y):1
Size of dots (f / g):1
Darkness (j / k): 250
Head fade (v/b): 10
Color style (c): colour by walker
q : toggle randoml: toggle backgroundp: change palette

Prime Filter

Random Modulo 3
A000005
$0,2,2,1,0,1,1,1,1,2,1,0,2,1,0, \ldots$

Modulus (m/n): 3
Fractional step (u/i): $\quad 0.50$
Number of Walkers (t / y):6
Size of dots (f / g): $\quad 1$
Darkness (j/k): 250
Head fade (v/b): $\quad 10$
Color style (c):
colour by walker
q: toggle random
l: toggle background
p: change palette

Prime Filter

Prime numbers

A000040

$3,5,7,11,13,17,19,23,29,31,37,41, \ldots$

Modulus $(\mathrm{m} / \mathrm{n}):$	8
Fractional step $(\mathrm{u} / \mathrm{i}):$	0.50
Number of Walkers $(\mathrm{t} / \mathrm{y}): 1$	
Size of dots $(\mathrm{f} / \mathrm{g}):$	1
Darkness $(\mathrm{j} / \mathrm{k}):$	250
Head fade $(\mathrm{v} / \mathrm{b}):$	10
Color style $(\mathrm{c}):$	colour by walker

q : toggle random
l: toggle background
p: change palette

Prime Filter

2

3^n modulo 1000003

$1,3,9,27,81,243,729,2187,6561,19683, \ldots$

Modulus (m/n): $\quad 4$

Fractional step (u / i): $\quad 0.50$
Number of Walkers (t / y):1
Size of dots (f / g): $\quad 1$
Darkness (j / k):
Head fade (v / b):
Color style (c):
colour by walker
q: toggle random
1: toggle background
p: change palette

Prime Filter

Number of divisors of n A000005
$2,2,3,2,4,2,4,3,4,2,6,2,4,4,5, \ldots$

Modulus (m / n):
 12

Fractional step (w/i): $\quad 0.50$
Number of Walkers (t/y):6
Size of dots (f / g): $\quad 1$
Darkness (j / k): $\quad 250$
Head fade (v/b): $\quad 10$
Color style (c): colour by walker
q : toggle random
I: toggle background
p : change palette

Thank you!

If you are interested in being a beta tester, please email me.

If you have a favourite integer sequence, please email me.
kstange@math.colorado.edu

