
The Farey structure of the Gaussian

integers

KATHERINE E. STANGE

Arrange three circles so that every pair is

mutually tangent. Is it possible to add another,

tangent to all three? The answer, as described

by Apollonius of Perga in Hellenistic Greece,

is yes, and, indeed, there are exactly two so-

lutions [oP71, Problem XIV, p.12]. The four

resulting circles are called a Descartes quadru-

ple, and it is impossible to add a fifth. There

is a remarkable relationship between their four

curvatures (inverse radii):

2(a2 + b2 + c2 + d2) = (a+ b+ c+ d)2.

René Descartes is first credited with this obser-

vation, in correspondence with Princess Eliza-

beth of Bohemia in 1643 [Des01, p.49]. No-

bel prize winning radiochemist Frederick Soddy

published his own rediscovery in Nature, shortly

before World War II, in the form of a poem

[Sod36], which begins:

For pairs of lips to kiss maybe

Involves no trigonometry.

This not so when four circles kiss

Each one the other three . . .

If we choose three mutually tangent circles of

integer curvatures a, b and c, then the two so-

lutions of Apollonius correspond to the two so-

lutions to the resulting quadratic equation in d.

If one of these is integral, so is the other. Thus

we discover that, if we begin with a Descartes

quadruple of integer curvatures, we can add a
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Figure 1. In the top row, the first few

stages of the iterative construction of an

Apollonian circle packing. At bottom, an

approximation of the finished packing, with

curvatures shown. The outer circle has cur-

vature −6, the sign indicating that its interior

is ‘outside.’

new circle of integer curvature. This quintu-

ple contains several fresh quadruples of integer

curvatures, and so follow other new integral cir-

cles, in the same manner. Continuing in this

way forever, we create an integral Apollonian

circle packing, an infinite fractal arrangement

of disjoint and tangent circles with integer cur-

vatures, as in Figure 1.

Related circle arrangements have appeared

for centuries, from Japanese sangaku temple

art [HF08] to Vi Hart’s popular YouTube videos

[Har]. But it is only in the past decade or
1
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two that number theorists have begun to an-

swer the question of which curvatures appear

in an integral Apollonian circle packing. It is

conjectured [GLM+03, FS11] that the only ob-

structions are local: in other words, in a given

packing, any sufficiently large integer not ruled

out by a specific congruence restriction mod-

ulo 24 will appear. This question has become

a demonstration piece for the newly emerging

theory of thin groups, and sophisticated tools

have been brought to bear on its partial solu-

tion: namely, that a density one collection of

such integers appears [BF11, BK14].

Momentarily putting aside the geometry, the

question is a recursive one: given a Descartes

quadruple of curvatures a, b, c, d, we obtain a

new integer d′ satisfying

d′ + d = 2(a+ b+ c).

The much more classical question of the values

represented by a quadratic form is very similar.

If f is a quadratic form, then the parallelogram

law states

f(u+ v) + f(u− v) = 2(f(u) + f(v)).

In this way, we can generate the primitive val-

ues of an integral binary quadratic form recur-

sively from its values on any triple of primitive

vectors u, v, u+ v ∈ Z2.

This observation led Conway to study these

values in visual form on a topograph capturing

the recursion [Con97]. Primitive vectors in Z2

(those with no common factor between their

coordinates), considered up to sign, are in bi-

jection with Q̂ := Q ∪ {∞}. The topograph is

an infinite tree breaking the plane into regions

corresponding to the elements of Q̂, as in Fig-

ure 2. In this picture, two regions are adjacent

(sharing a wall) if and only if the correspond-

ing elements a/b, c/d ∈ Q̂ are unimodular, i.e.
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Figure 2. A portion of Conway’s topo-

graph. Each region is labelled by an element

of Q̂. The parallelogram law, with respect to

the central wall, reads f(−1, 1) + f(1, 1) =

2(f(1, 0) + f(0, 1)).

ad − bc = ±1. The recurrence relation above

relates the values of f on the four regions sur-

rounding any one wall (u and v on either side,

and u ± v at either end). In Conway’s tree,

given two regions that share a boundary edge

(are ‘tangent ’), there are exactly two ways to

choose a third so that all three are mutually

‘tangent’. Three such ‘mutually tangent’ ele-

ments of Q̂ are called a superbasis. The values

of an integral binary quadratic form on a su-

perbasis determine all the values through the

recursion of the parallelogram law.

These two questions – values of a quadratic

form and curvatures in a packing – can be uni-

fied with a little hyperbolic geometry. Let us

consider H, the upper half plane. This is a

model of H2, the hyperbolic plane, in which the

geodesics run along Euclidean circles orthogo-

nal to its boundary, R̂ := R∪{∞}. The hyper-

bolic isometries are obtained by extending the

action of PSL2(Z) on the boundary. The action

of PSL2(Z) on H has a fundamental region as

delineated by geodesics in Figure 3. Also shown
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Figure 3. A portion of the upper half plane H. In shaded grey, the usual

fundamental region for the action of SL2(Z). In black and red, the boundaries

subdividing H into images of this fundamental region. In red, Conway’s

topograph. In green, the orbit of the geodesic line from 0 to ∞ (which also

breaks up H into fundamental triangles).

in that figure is Conway’s topograph, now rein-

carnated as a subset of the walls between im-

ages of this region: to find it, choose the walls

of finite length, i.e. those not approaching the

boundary R̂. The regions of the topograph now

correspond to the cusps in the picture: one for

each element of Q̂. (Each such region has a

horocircle inscribed in it, a circle tangent to all

sides. The collection of such circles (discount-

ing the one at ∞) is famously known as the

Ford circles.)

Also shown in Figure 3, in green, is the orbit

of the geodesic line from 0 to ∞. The green

geodesics are in bijection with the unimodular

pairs of Q̂, by associating to each line its two

boundary points. This green structure could

be termed a Farey fractal, as it illustrates the

well-known Farey subdivision of R̂: beginning

with the two intervals created by 0 = 0/1 and

∞ = 1/0, subdivide each interval (a/b, c/d) at

its mediant (a + c)/(b + d). Each green arc

is the ‘top’ of a hyperbolic triangle formed by

this subdivision. This is called the upper half

plane Farey diagram in Hatcher’s rich treat-

ment [Hat, Chapter 1].

Now let us move up one dimension. Con-

sider the upper half space S, a model of H3

sitting above its boundary, Ĉ = C ∪ {∞}. The

geodesic planes are the hemispheres orthogonal

to Ĉ. The hyperbolic isometries of this model

are exactly the extensions of the Möbius trans-

formations on Ĉ, which can be expressed as

PSL2(C) o 〈c〉 where c is complex conjugation.

The analogue of PSL2(Z) of interest to us

in this setting is PSL2(OK) where OK is the

ring of integers of an imaginary quadratic field.

This is a discrete subgroup of hyperbolic isome-

tries, and it has a fundamental domain, which

is a volume cut out by several geodesic planes.

There are many analogies to the upper half

plane. In H, the set Q̂ was the orbit of the

single cusp of the fundamental region. The

number of cusps of the fundamental region of

PSL2(OK) is the class number of OK . What
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Figure 4. The Schmidt arrangement of the

Gaussian integers. The box between 0 and

1 + i is shown, including only circles with

curvatures at most 20. The Schmidt ar-

rangement is periodic under translation by

Z[i]. The Apollonian strip packing (which

is bounded by two horizontal lines through

0 and i) is highlighted in black.

is the analogue of the Farey fractal? We take

the orbit of one geodesic plane. Restricting

to the boundary Ĉ, this gives an orbit of cir-

cles under the collection of Möbius transforma-

tions PSL2(OK). A natural choice is R̂ = R ∪
{∞}: then we obtain a Schmidt arrangement

[Sta12b, Sta14], named for Asmus Schmidt’s

study of complex continued fractions [Sch75].

The Gaussian case, OK = Z[i], is shown in Fig-

ure 4.

The circles of the Gaussian Schmidt arrange-

ment are pairwise either disjoint or mutually

tangent. They are dense in Ĉ and yet they

have a fascinating fractal structure. A circle

obtained as the image of R̂ under a transfor-

mation
( α γ
β δ

)
has curvature i(βδ − βδ), which

is always twice a rational integer. Therefore,

dilating by a factor of two, we obtain a wild

forest of tangent and disjoint circles of integer

curvature. Remarkably, it includes every pos-

sible integral Apollonian circle packing, up to

rigid motions and scaling (see [GLM+06, The-

orem 6.1] and more generally [Sta14, Theorem

1.3]).

In other words, there is a subgroup of PSL2(OK)

which generates any integral Apollonian circle

packing. The orbit of this subgroup is shown

in Figure 4. This subgroup is called the Apol-

lonian group, and it is a so-called thin group,

i.e. of infinite index in its Zariski closure.

Similar thin groups appear in other Schmidt

arrangements, giving rise to other Apollonian-

like packings with integrality properties [Sta14].

The Schmidt arrangements themselves reflect

the arithmetic of their respective fields; for ex-

ample, the Schmidt arrangement of K is con-

nected if and only if OK is Euclidean [Sta12b,

Theorem 1.5] (see Figure 5).

Now let us return to the question of the inte-

gers represented by forms and curvatures. First,

consider H. The unimodular pair (a/b, c/d)

has separation (distance between the elements)

1/bd. Hence the integral binary quadratic form

f(b, d) = bd is a reasonable choice for the mean-

ing of curvature of the pair. Given any super-

basis – geometrically, a hyperbolic triangle of

the Farey fratal – if we know its curvatures, the

parallelogram law determines the curvatures of

the further subdivisions – the adjacent trian-

gles. The recursive structure of the Farey frac-

tal illustrates exactly this.

Now, consider S. A circle has curvature i(βδ−
βδ). This is a Hermitian form. Knowledge

of the form on any Descartes quadruple deter-

mines it, recursively, on the entire Apollonian

circle packing. The recursive structure of the

Schmidt arrangement illustrates exactly this.
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Figure 5. The Schmidt arrangement of

Q(
√
−19), which is disconnected. Only cir-

cles with curvature at most 30 are shown; the

two dark accumulations near the bottom are

located at 0 and 1.

Therefore we have uncovered a rather pleas-

ing analogy:

H S
R̂ Ĉ
H2 H3

PSL2(Z) PSL2(Z[i])

unimodular pairs circles

1/separation curvature

quadratic form Hermitian form

For more on this analogy, see [Sta12a, Sta12b,

Sta14].

However, the difficulty in resolving the local-

global conjecture, as compared to describing

the values of a quadratic form, resides in the

fact that an Apollonian circle packing repre-

sents a thin subgroup of PSL2(OK). For more

on this fascinating new frontier, see [Kon13].

A note on figures. The figures in this doc-

ument were produced using Sage Mathematics

Software [S+15].
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