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Theorem 1. For all n ≥ k ≥ 0,(
n

k

)
=

(
n

n− k

)
Illustration: Subsets of size 2 from S = {a, b, c, d, e}. (k = 2, n = 5)

Subset k elements chosen n− k elements not chosen
{a,b} a,b c,d,e
{a,c} a,c b,d,e
{a,d} a,d b,c,e
{a,e} a,e b,c,d
{b,c} b,c a,d,e
{b,d} b,d a,c,e
{b,e} b,e a,c,d
{c,d} c,d a,b,e
{c,e} c,e a,b,d
{d,e} d,e a,b,c

Proof. We will show that both sides of the equation count the number of ways
to choose a subset of size k from a set of size n.

The left hand side of the equation counts this by definition.
Now we consider the right hand side. To choose a subset of size k, we

can instead choose the n − k elements to exclude from the subset. There are(
n

n−k

)
ways to do this. Therefore the right hand side also counts the desired

quantity.
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Theorem 2. For all n ≥ k ≥ 1,(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Illustration: Subsets of size 3 from S = {a, b, c, d, e} (k = 3, n = 5).

Subsets Subsets containing a Subsets not containing a
{a,b,c} {a,b,c}
{a,b,d} {a,b,d}
{a,b,e} {a,b,e}
{a,c,d} {a,c,d}
{a,c,e} {a,c,e}
{a,d,e} {a,d,e}
{b,c,d} {b,c,d}
{b,c,e} {b,c,e}
{b,d,e} {b,d,e}
{c,d,e} {c,d,e}

10 =
(
5
3

)
6 =

(
4
2

)
4 =

(
4
3

)
Proof. I have broken the proof under three headings to highlight its structure.

1. QUESTION: We will show that both sides of the equation count the
number of ways to choose a subset of size k from a set S of size n.

2. LEFT: The left hand side of the equation counts this by definition.

3. RIGHT: Let s ∈ S be a fixed element. We will show that the right hand
side counts the desired quantity by conditioning on whether s is in the
subset.

First, we will count how many subsets of size k include s. Since
such a subset includes s, there are k − 1 other elements in the subset,
which must be chosen from the remaining n− 1 elements of S. Therefore
there are

(
n−1
k−1

)
such subsets.

Second, we will count how many subsets of size k do not include
s. Since the subset does not include s, all of its k elements are chosen
from the remaining n − 1 elements of S. Therefore there are

(
n−1
k

)
such

subsets.

Since any subset of size k either includes s or does not (but not both), the
total number of subsets is the sum of the counts in the two cases.
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Theorem 3. For all n ≥ k ≥ m ≥ 0,(
n

k

)(
k

m

)
=

(
n

m

)(
n−m

k −m

)
.

Proof. 1. QUESTION: We will show that both sides of the equation count
the number of ways to choose a committee of k students from a student
body of n students, where, in addition, a subcomittee of m of the k stu-
dents form the executive committee.

2. LEFT: We will describe the counting process.

(a) First, we choose k students from the student body of n students, to
form the committee. There are

(
n
k

)
ways to do this.

(b) Then we choose m students from among those k to form the subcom-
mittee. There are

(
k
m

)
ways to do this.

By the multiplication principle, the left hand side counts the desired quan-
tity.

3. RIGHT: We will describe the counting process.

(a) First, we choose m students from the student body of n students, to
form the executive committee. There are

(
n
m

)
ways to do this.

(b) Then we choose k −m of the remaining portion of the student body
(which consists of n−m students), to form the non-executive part of
the committee. There are

(
n−m
k−m

)
ways to do this.

By the multiplication principle, the right hand side counts the desired
quantity.
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Theorem 4. For all n ≥ 1,

n∑
k=0

(
n

k

)
= 2n.

Proof. 1. QUESTION: We will show that both sides of the equation count
the number of ways to choose a subset of a set S of n elements.

2. RIGHT: When creating a subset of S, for each element of S, there are
two options: to include it or not to include it. Since we make this choice n
times (once for each element), there are a total of 2n possible sequences of
choices. Each sequence gives exactly one subset, and every subset results
from exactly one sequence. Therefore there are a total of 2n subsets of S.
Therefore the right hand side counts the desired quantity.

3. LEFT: We will show that the left hand side counts the desired quantity
by conditioning on the size of the subset. The possible sizes of subsets of
S are 0 ≤ k ≤ n. By definition, there are

(
n
k

)
subsets of size k. Therefore

the total number of subsets is the sum on the left hand side.

Theorem 5. For all n ≥ 1,

n−1∑
k=0

2k = 2n − 1.

Proof. 1. QUESTION: We will show that both sides of the equation count
the number of ways to choose a non-empty subset of the set S = {1, 2, . . . , n}.

2. RIGHT: As in the last proof, the number of subsets of S is 2n. Exactly
one of these is empty, so there are 2n − 1 non-empty subsets.

3. LEFT: We will show that the left hand side counts the desired quantity
by conditioning on the largest element of the subset. Every non-empty
subset has a largest element k where 1 ≤ k ≤ n.

Let 1 ≤ k ≤ n. We will count the number of subsets of S having largest
element k. Such a subset includes k and does not include k + 1, . . . , n.
Therefore to specify such a subset we must decide k − 1 choices: for each
element of {1, 2, . . . , k− 1}, we must decide to include or not include that
element. Therefore there are 2k−1 such subsets.

Summing over all possible k, we see that the left hand side counts the
desired quantity.
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