Example Combinatorial Proofs

October 13, 2015

Theorem 1. For all $n \ge k \ge 0$,

$$\binom{n}{k} = \binom{n}{n-k}$$

Illustration: Subsets of size 2 from $S = \{a, b, c, d, e\}$. (k = 2, n = 5)

Subset	k elements chosen	n-k elements not chosen
$\{a,b\}$	a,b	c,d,e
$\{a,c\}$	$^{\mathrm{a,c}}$	b,d,e
$\{a,d\}$	a,d	b,c,e
$\{a,e\}$	a,e	$^{\mathrm{b,c,d}}$
${b,c}$	b,c	a,d,e
${b,d}$	b,d	a,c,e
${b,e}$	b,e	a,c,d
$\{c,d\}$	c,d	a,b,e
${c,e}$	c,e	a,b,d
$\{d,e\}$	d,e	a,b,c

Proof. We will show that both sides of the equation count the number of ways to choose a subset of size k from a set of size n.

The left hand side of the equation counts this by definition.

Now we consider the right hand side. To choose a subset of size k, we can instead choose the n - k elements to exclude from the subset. There are $\binom{n}{n-k}$ ways to do this. Therefore the right hand side also counts the desired quantity.

Theorem 2. For all $n \ge k \ge 1$,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Illustration: Subsets of size 3 from $S = \{a, b, c, d, e\}$ (k = 3, n = 5).

Subsets	Subsets containing a	Subsets not containing a
${a,b,c}$	${a,b,c}$	
a,b,d	a,b,d	
${a,b,e}$	a,b,e	
${a,c,d}$	$\{a,c,d\}$	
$\{a,c,e\}$	$\{a,c,e\}$	
${a,d,e}$	${a,d,e}$	
${b,c,d}$		$\{b,c,d\}$
${b,c,e}$		${b,c,e}$
${b,d,e}$		$\{b,d,e\}$
$\{c,d,e\}$		$\{c,d,e\}$
$10 = \binom{5}{3}$	$6 = \binom{4}{2}$	$4 = \binom{4}{3}$

Proof. I have broken the proof under three headings to highlight its structure.

- 1. QUESTION: We will show that both sides of the equation count the number of ways to choose a subset of size k from a set S of size n.
- 2. LEFT: The left hand side of the equation counts this by definition.
- 3. **RIGHT:** Let $s \in S$ be a fixed element. We will show that the right hand side counts the desired quantity by conditioning on whether s is in the subset.

First, we will count how many subsets of size k include s. Since such a subset includes s, there are k - 1 other elements in the subset, which must be chosen from the remaining n - 1 elements of S. Therefore there are $\binom{n-1}{k-1}$ such subsets.

Second, we will count how many subsets of size k do not include s. Since the subset does not include s, all of its k elements are chosen from the remaining n-1 elements of S. Therefore there are $\binom{n-1}{k}$ such subsets.

Since any subset of size k either includes s or does not (but not both), the total number of subsets is the sum of the counts in the two cases.

Theorem 3. For all $n \ge k \ge m \ge 0$,

$$\binom{n}{k}\binom{k}{m} = \binom{n}{m}\binom{n-m}{k-m}.$$

- *Proof.* 1. **QUESTION:** We will show that both sides of the equation count the number of ways to choose a committee of k students from a student body of n students, where, in addition, a subcomittee of m of the k students form the executive committee.
 - 2. LEFT: We will describe the counting process.
 - (a) First, we choose k students from the student body of n students, to form the committee. There are ⁿ_k ways to do this.
 - (b) Then we choose m students from among those k to form the subcommittee. There are $\binom{k}{m}$ ways to do this.

By the multiplication principle, the left hand side counts the desired quantity.

- 3. **RIGHT:** We will describe the counting process.
 - (a) First, we choose m students from the student body of n students, to form the executive committee. There are $\binom{n}{m}$ ways to do this.
 - (b) Then we choose k m of the remaining portion of the student body (which consists of n m students), to form the non-executive part of the committee. There are $\binom{n-m}{k-m}$ ways to do this.

By the multiplication principle, the right hand side counts the desired quantity.

Theorem 4. For all $n \ge 1$,

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

- *Proof.* 1. **QUESTION:** We will show that both sides of the equation count the number of ways to choose a subset of a set S of n elements.
 - 2. RIGHT: When creating a subset of S, for each element of S, there are two options: to include it or not to include it. Since we make this choice n times (once for each element), there are a total of 2ⁿ possible sequences of choices. Each sequence gives exactly one subset, and every subset results from exactly one sequence. Therefore there are a total of 2ⁿ subsets of S. Therefore the right hand side counts the desired quantity.
 - 3. **LEFT:** We will show that the left hand side counts the desired quantity by conditioning on the size of the subset. The possible sizes of subsets of S are $0 \le k \le n$. By definition, there are $\binom{n}{k}$ subsets of size k. Therefore the total number of subsets is the sum on the left hand side.

Theorem 5. For all $n \ge 1$,

$$\sum_{k=0}^{n-1} 2^k = 2^n - 1.$$

- *Proof.* 1. **QUESTION:** We will show that both sides of the equation count the number of ways to choose a *non-empty* subset of the set $S = \{1, 2, ..., n\}$.
 - 2. **RIGHT:** As in the last proof, the number of subsets of S is 2^n . Exactly one of these is empty, so there are $2^n 1$ non-empty subsets.
 - 3. **LEFT:** We will show that the left hand side counts the desired quantity by conditioning on the largest element of the subset. Every non-empty subset has a largest element k where $1 \le k \le n$.

Let $1 \le k \le n$. We will count the number of subsets of S having largest element k. Such a subset includes k and does not include k + 1, ..., n. Therefore to specify such a subset we must decide k - 1 choices: for each element of $\{1, 2, ..., k - 1\}$, we must decide to include or not include that element. Therefore there are 2^{k-1} such subsets.

Summing over all possible k, we see that the left hand side counts the desired quantity.