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Notation

real numbers, reals greater than 0, n-tuples of reals
natural numbers: {0,1,2,...}, complex numbers
interval (open, closed) of reals between a and b
sequence; like a set but order matters

vector spaces

vectors, zero vector, zero vector of V

bases, basis vectors

standard basis for R™

matrix representing the vector

set of degree n polynomials

set of nxm matrices

span of the set S

direct sum of subspaces

isomorphic spaces

homomorphisms, linear maps

matrices

transformations; maps from a space to itself
square matrices

matrix representing the map h

matrix entry from row 1i, column j

zero matrix, identity matrix

determinant of the matrix T

range space and null space of the map h
generalized range space and null space

Lower case Greek alphabet, with pronounciation

character name character name
x alpha AL-fuh v nu NEW
8] beta BAY-tuh & xi KSIGH
2% gamma GAM-muh ) omicron OM-uh-CRON
S delta DEL-tuh s pi PIE
€ epsilon EP-suh-lon P rho ROW
4 zeta ZAY-tuh o sigma SIG-muh
n eta AY-tuh T tau TOW as in cow
0 theta THAY-tuh v upsilon OOP-suh-LON
L iota eye-OH-tuh [0) phi FEE, or FI as in hi
K kappa KAP-uh X chi KI as in hi
A lambda LAM-duh VP psi SIGH, or PSIGH
v mu MEW w omega oh-MAY-guh



Preface

These are answers to the exercises in Linear Algebra by J Hefferon.

An answer labeled here as, for instance, One.I1.3.4, matches the question numbered 4 from the first
chapter, second section, and third subsection. The Topics are numbered separately.

Save this file in the same directory as the book so that clicking on the question number in the book takes
you to its answer and clicking on the answer number takes you to the associated question, provided that you
don’t change the names of the saved files.”

Bug reports or comments are very welcome. For contact information see the book’s home page http:
//joshua.smcvt.edu/linearalgebra.

Jim Hefferon
Saint Michael’s College, Colchester VT USA
2012-Oct-12

*Yes, I once got a report of the links not working that proved to be due to the person saving the files with changed names.
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Chapter One: Linear Systems

Solving Linear Systems

One.l.1: Gauss’s Method

One.l.1.17 We can perform Gauss’s Method in different ways so these exhibit one possible way to get the
answer.
(a) Gauss’s Method
~(1/20pg 402 x4+ 3y= 13
—(5/2)y=-15/2
gives that the solution is y =3 and x = 2.
(b) Gauss’s Method here

N x — z=0 x — z=0
IR STV P I VI P
pP1+P3
y =4 —3z=3
gives x =—1,y=4, and z = —1.
One.l.1.18  (a) Gaussian reduction
—(1/2)p1+p2 2x+ 2y= 5
- —5y——5,2

shows that y = 1/2 and x = 2 is the unique solution.
(b) Gauss’s Method
pitp2 —x+ y=1
—
2y=3
gives y = 3/2 and x = 1/2 as the only solution.
(c) Row reduction
—p1+p2 x—3y +z=1
—
4y+z=13
shows, because the variable z is not a leading variable in any row, that there are many solutions.
(d) Row reduction
—3p1+p2> —x—y= 1
—
0=-1

shows that there is no solution.



(e) Gauss's Method

x+ y—z=10 x+ y— z= 10
p1opa 2x—2y+z= 0 —Zupz —4y+3z=-20 —
X +z= 5 —pi+pes —y+2z= -5
4y +2z=20 4y+ z= 20
gives the unique solution (x,y,z) = (5,5,0).
(f) Here Gauss’s Method gives
2x  + z+ w= 5
*(3/2)_P>1+Ps Yy - w= =1 —p2+ps
—2p14pa —(5/2)z—(5/2)w=—-15/2
y — w=  —I
which shows that there are many solutions.

One.l.1.19

(1/4)_P>2+93

P2+pP4

2x 4+
y
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X+ Y- z= 10
—4y + 3z=-20
(5/4)z= 0
4z= 0
z+ w= 5
— w=  —I

—(5/2)z— (5/2)w = —15/2

0= 0

(a) From x =1 — 3y we get that 2(1 —3y) +y = —3, givingy = 1.

(b) From x = 1 — 3y we get that 2(1 — 3y) + 2y = 0, leading to the conclusion that y =1/2.
Users of this method must check any potential solutions by substituting back into all the equations.

One.l.1.20 Do the reduction
X—y=

—3p1+p2
-3

1

0=—3+%

to conclude this system has no solutions if k # 3 and if k = 3 then it has infinitely many solutions. It

never has a unique solution.

One.l.1.21 Let x =sina, y =cosf, and z =tanvy:
2x— y+3z= 3
4x+2y—2z=10
ex—3y+ z= 9

4y —

2x— y+ 3z=3
8z=4

—8z2=0

gives z =0,y =1, and x = 2. Note that no « satisfies that requirement.

One.l.1.22  (a) Gauss’s Method
x— 3y= [oF x— 3y=
—3p1+p2 10y=*3b1 + by —;ﬂm 10y=
:S1+_Es 10y = —b; 4+ b3 —p2tps 0=2b;
P 0y =—2b; + by 0= by

o
—3b; + by

—by+ by

shows that this system is consistent if and only if both b3 = —2b; 4+ b, and by = —b; + bs.

(b) Reduction

5 X1+ 2x2 +3x3= by 5 X1+ 2x2 + 3x3 = b
B %sz X2 —3x3 =—2b7 + by L2rps X2 — 3x3 = —2b; + by
—P1TP3

—2X2 +5X3 = —b] + b3

—X3 = —5b1 + sz + b3

shows that each of by, by, and bz can be any real number —this system always has a unique solution.

One.l.1.23 This system with more unknowns than equations
x+y+z=0
x+y+z=1

has no solution.

One.l.1.24 Yes. For example, the fact that we can have the same reaction in two different flasks shows that
twice any solution is another, different, solution (if a physical reaction occurs then there must be at least

one nonzero solution).
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One.l.1.25 Because f(1) =2, f(—1) =6, and f(2) = 3 we get a linear system.

la+Tb+c=2
la—1b+c=6
4a+2b+c=3
Gauss’s Method
a+ b+ c= 2 a+ b+ c= 2
_‘4‘;‘1—}"; b = 4 —2b = 4
—2b—-3c=-5 —3c=-9

shows that the solution is f(x) = 1x2 — 2x + 3.
One.l.1.26 Here So ={(1,1)}
x+y=2 o0p, x+y=2
x—y=0 0=0
while S is a proper superset because it contains at least two points: (1,1) and (2,0). In this example the
solution set does not change.
x4+ y=2 op, x+y=2
x4+2y=4 0=0
One.l.1.27  (a) Yes, by inspection the given equation results from —p; + p3.
(b) No. The pair (1,1) satisfies the given equation. However, that pair does not satisfy the first equation
in the system.
(c) Yes. To see if the given row is c1p7 + c2p2, solve the system of equations relating the coefficients of x,
Y, z, and the constants:

2c1+6c= 6

(] —3C2:—9
—c1+ ¢c2= 5
4cq1 +5¢c, =2

and get ¢; = —3 and ¢, = 2, so the given row is —3p; + 2p>.

One.l.1.28 If a # O then the solution set of the first equation is {(x,y) | x = (c—by)/a}. Takingy =0
gives the solution (c/a,0), and since the second equation is supposed to have the same solution set,
substituting into it gives that a(c/a)+d-0=e, so c = e. Then taking y =1 in x = (c — by)/a gives that
a((c—b)/a)+ d -1 = e, which gives that b = d. Hence they are the same equation.

When a = 0 the equations can be different and still have the same solution set: e.g., 0x + 3y = 6 and
Ox +6y =12
One.l.1.29 We take three cases: that a # 0, that a =0 and ¢ # 0, and that both a =0 and ¢ = 0.
For the first, we assume that a % 0. Then the reduction
—(c/a)pi+p2 QX+ by = j
- (—2+dy=—F +k
shows that this system has a unique solution if and only if —(cb/a) + d # 0; remember that a # 0 so that
back substitution yields a unique x (observe, by the way, that j and k play no role in the conclusion that
there is a unique solution, although if there is a unique solution then they contribute to its value). But
—(cb/a) + d = (ad — bc)/a and a fraction is not equal to 0 if and only if its numerator is not equal to 0.
Thus, in this first case, there is a unique solution if and only if ad — bc # 0.
In the second case, if a =0 but ¢ # 0, then we swap
cx+dy=k
by=j
to conclude that the system has a unique solution if and only if b # 0 (we use the case assumption that
c # 0 to get a unique x in back substitution). But—where a = 0 and ¢ # 0—the condition “b # 0” is
equivalent to the condition “ad — bc # 0”. That finishes the second case.
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Finally, for the third case, if both a and ¢ are 0 then the system
Ox+by=j
Ox+dy=k
might have no solutions (if the second equation is not a multiple of the first) or it might have infinitely many
solutions (if the second equation is a multiple of the first then for each y satisfying both equations, any
pair (x,y) will do), but it never has a unique solution. Note that a = 0 and ¢ = 0 gives that ad — bc = 0.

One.l.1.30 Recall that if a pair of lines share two distinct points then they are the same line. That’s because
two points determine a line, so these two points determine each of the two lines, and so they are the same
line.

Thus the lines can share one point (giving a unique solution), share no points (giving no solutions), or
share at least two points (which makes them the same line).

One.l.1.31 For the reduction operation of multiplying p; by a nonzero real number k, we have that (sq,...,sn)
satisfies this system
ajx1 + aipx2+ -+ araxn = di

kai1x1 + kaj2x +--- +kaynxn =kd;

Am,1X1 + Am,2X2 + -+ AmnXn = dm
if and only if

aj1s1+ai s+ -+ aynse =di
and kai 181 +kaj 252 + -+ kaijnsn = kdy
and am,151 +am282+ -+ AmnSn = dm
by the definition of ‘satisfies’. But, because k # 0, that’s true if and only if
aj1s1+ai s+ -+ aynse =dg
and ai,181 + @i 282+ -+ AinsSn =di
and am,181 +am282+ -+ AmnSn = dm

(this is straightforward canceling on both sides of the i-th equation), which says that (si,...,sn) solves

aj X1 + arpx2 4o+ A axn = di
ai,1Xx1 + @i2X2+--+ Qinxn = di

Am,1X1 + Am,2X2 +- AmnXn = dm

as required.
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For the combination operation kp; + pj, we have that (s1,...,s,) satisfies
ajxy + -+ a1,nXn = ds
ai,ix1 + -+ QinXn = di

(kai,1 +aj1)x1 + -+ (kain + @j,n)xn =kdi + d;

Am,1X1 + -+ AmnXn = dm
if and only if

ai,;181 +---+ainsn = dg
and ai 181+ + Ainsn = di
and (kai,1 +aj,1)s1 4+ -+ (kain + ajn)sn = kdi + d;

and am,181 + am,282 + - + AmnSn = dm

again by the definition of ‘satisfies’. Subtract k times the i-th equation from the j-th equation (remark: here
is where we need i # j; if i = j then the two di’s above are not equal) to get that the previous compound
statement holds if and only if

181+ + a1 nsn = ds
and ai181 +- -+ AinsSn = dy

and (kai +aj1)s1 + -+ (kain + ajn)sn
— (kam ST+ + kai,nsn) =kd; +d; — kd;

and am,181 4+ -+ AmnSn = dm



which, after cancellation, says that (sq,...,ss) solves

ai1x1 + -+ arnxn = dy

ai1x1 + -+ apnxn = di

ajix1 + o QX = dj

Am,1X1 + -+ AmnXn =dm
as required.
One.l.1.32 Yes, this one-equation system:
Ox+0y=20
is satisfied by every (x,y) € R2.

One.l.1.33 Yes. This sequence of operations swaps rows i and j
pitp;  —pitei pPite;  —lps
— — — —

so the row-swap operation is redundant in the presence of the other two.

One.l.1.34 Reverse a row swap by swapping back.
aiaxy + oo+ arnxn = dy

Am,1X1 + -+ QmnXn = din

ai X1 + oo+ arnxn = dy
kpi (1/k)pi

Am,1X1 + -+ AmnXn =dm

ai Xy + -+ Ay nXpn = dq

kpit+p; —kpitpj
— —

Am,1X1 + -+ AmnXn = dm

Linear Algebra, by Hefferon

a11X1 + oo+ Ay aXn = d;

Am,1X1 + * F+ AQmnXn = dm
Multiplying both sides of a row by k # 0 is reversed by dividing by k.

aj Xy + oo+ arnxn = dy

Am,1X1 + -+ amnXn =dm
Adding k times a row to another is reversed by adding —k times that row.

aixy + oo+ arnxn = dy

Am,1X1 + -+ AmnXn = dm

Remark: observe for the third case that if we were to allow i = j then the result wouldn’t hold.

P1+pP1 —2p1+p1

3x+2y:72—> x+6y=21 7 —9x—6y=-21

One.l.1.35 Let p, n, and d be the number of pennies, nickels, and dimes. For variables that are real numbers,

this system

p+ Tl—l- d:13 —pP1+pP2 p+ Tl—l— d=]3

p+5n+10d =83

INn+9d=70

has more than one solution, in fact, infinitely many of them. However, it has a limited number of
solutions in which p, n, and d are non-negative integers. Running through d =0, ..., d = 8 shows that

(p,n,d) = (3,4,6) is the only solution using natural numbers.
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One.l.1.36 Solving the system

1/3)(a+b+c)+d=29
1/3)(b+c+d)+a=23
1/3)(c+d+a)+b=21
1/3)(d+a+b)+c=17

we obtain a =12, b =9, ¢ =3, d = 21. Thus the second item, 21, is the correct answer.

(
(
(
(

One.l.1.37 This is how the answer was given in the cited source. A comparison of the units and hundreds
columns of this addition shows that there must be a carry from the tens column. The tens column then
tells us that A < H, so there can be no carry from the units or hundreds columns. The five columns then
give the following five equations.

A+E=W
2H=A+10
H=W+1
H+T=E+10
A+1=T

The five linear equations in five unknowns, if solved simultaneously, produce the unique solution: A =4,
T=5 H=7,W=6and E = 2, so that the original example in addition was 47474 4 5272 = 52746.

One.l.1.38 This s how the answer was given wn the cited source. Eight commissioners voted for B. To
see this, we will use the given information to study how many voters chose each order of A, B, C.
The six orders of preference are ABC, ACB, BAC, BCA, CAB, CBA; assume they receive a, b, ¢, d, e,
f votes respectively. We know that

a+b+e=11
d+e+ f=12
a+c+d=14

from the number preferring A over B, the number preferring C over A, and the number preferring B over
C. Because 20 votes were cast, we also know that

c+d+f=9
a+b+c=38
b+e+f=6

from the preferences for B over A, for A over C, and for C over B.

The solutionisa=6,b=1,c=1,d=7, e =4, and f = 1. The number of commissioners voting for
B as their first choice is therefore c+d =147 =8.
Comments. The answer to this question would have been the same had we known only that at least 14
commissioners preferred B over C.

The seemingly paradoxical nature of the commissioner’s preferences (A is preferred to B, and B is
preferred to C, and C is preferred to A), an example of “non-transitive dominance”, is not uncommon when
individual choices are pooled.

One.l.1.39 This s how the answer was given in the cited source. We have not used “dependent” yet,
it means here that Gauss’s Method shows that there is not a unique solution. If n > 3 the system
is dependent and the solution is not unique. Hence n < 3. But the term “system” implies n > 1. Hence
n = 2. If the equations are

ax+ (a+djy=a+2d
(a+3d)x+ (a+4d)y=a+5d

then x =—1,y =2.
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One.l.2: Describing the Solution Set

One.l215 (@) 2 (b)3 (c) =1 (d) Not defined.
One.l2.16  (a) 2x3 (b) 3x2 (c) 2x2
5

-2 12
One.l.2.17  (a) |1 (b) <_22> (c) 4 (d) (gl) (e) Not defined.  (f) 8
0

5 4
3 6[18) (—i/siere: (3 618
(1 2 6) - (o 0 o)

One.l.2.18  (a) This reduction
leaves x leading and y free. Making y the parameter, we have x = 6 — 2y so the solution set is

6\ (-2
ENg i
1 1 1 —pP1+p2 1 1 1
(1 -1 —1) 7 (o —2—2)

gives the unique solution y = 1, x = 0. The solution set is

()

(b) This reduction

(c) This use of Gauss’s Method

1 0 1] 4 1T 0 14 1 0 14
1T 1 2 5] 252 o 1 11| = o -1 1
4 —1 s5)17) "o 11 0 0 0]0
leaves x7 and x, leading with x3 free. The solution set is
4 1
{[=1[+] 1[x3]xseR}
0 1
(d) This reduction
2 1 12 2 1 -1 2 21 2
2 0 13| T o o1 2| a| ARRTe |y 2 1
1 -1 olo) PP \o 32 12| —1 0 0 -5/2|-5)2

shows that the solution set is a singleton set.

(e) This reduction is easy

1T 2 -1 0|3 1 2 -1 0| 3

12 -1 0] 3
201 0 1fa] SR lo 3 2 1|2 B o 3 2 1|22
11 1) T o 3 2 1|2

o 0 0 0| O
and ends with x and y leading, while z and w are free. Solving for y gives y = (24 2z +w)/3 and

substitution shows that x +2(24+2z4+w)/3—z =3 sox = (5/3) — (1/3)z— (2/3)w, making the solution

5/3 —1/3 —-2/3
{ 2/(3) + 2/? z+ 1/(3) w|z,w€R}.

0 0 1



Answers to Ezercises

(f) The reduction

1 0 1 114 ) 10 1 0 1 1 4
210 —1jz| 2o 1 2 36| T o1 2 -3 -6
311 0]7) M \o 00 0 O0f 1
shows that there is no solution —the solution set is empty.
One.l.2.19  (a) This reduction
2 1 =11 ~2p14p2 2 1 =111
4 —1 03 0 -3 2|1
ends with x and y leading while z is free. Solving for y gives y = (1 —2z)/(—3), and then substitution
2x+ (1 —2z)/(—3) — z = 1 shows that x = ((4/3) + (1/3)z)/2. Hence the solution set is

2/3 1/6
{[-13|+|2/3]|z]|z€R}
0 1

(b) This application of Gauss’s Method
10 =1 01

1 0 -1 011 1 0 -1 011
01 2 =13 ™ o1 2 <3| A o1 2 13
1 2 3 —1|7 0 2 4 —1]6e6 0 0 0 110
leaves x, y, and w leading. The solution set is
1 1
{ 3 + _f Z|ZER}.
0 0
(c) This row reduction
1 =11 010 1 =1 1 010 1T =1 1 00
0 1 0 110] —3p1+ps | O 1 0 10—;2;330 1 0 1|0
3 =23 1]0 o 1.0 1]0 p2tpa |0 0 0 010
0 -1 0 =110 0O -1 0 =110 0 0 0 010
ends with z and w free. The solution set is
0 —1 -1
{ g + ? z+ _(]) W|Z,WER}.
0 0 1

(d) Gauss’s Method done in this way

1 2 3 1 =11 —3p1¢p2 1 2 3 1T =11
3 -1 11 113 0 -7 =8 -2 4]0

ends with ¢, d, and e free. Solving for b shows that b = (8¢ + 2d —4e)/(—7) and then substitution

a+2(8c+2d—4e)/(—7)+3c+1d —1e =1 shows that a =1—(5/7)c — (3/7)d — (1/7)e and so the
solution set is

1 —5/7 -3/7 —1/7
0 —8/7 —2/7 4/7

{1o]+ T|e+ 0|d+ 0|e|cdecR})
0 0 1 0
0 0 0 1

One.l.2.20 For each problem we get a system of linear equations by looking at the equations of compo-
nents.

(a) k=5



10 Linear Algebra, by Hefferon

(b) The second components show that i = 2, the third components show that j = 1.
(c)m=—-4,n=2

One.l.2.21 For each problem we get a system of linear equations by looking at the equations of compo-
nents.
(a) Yes; take k =—1/2.
(b) Noj the system with equations 5 =5-j and 4 = —4 - j has no solution.
(c) Yes; take v = 2.
(d) No. The second components give k = 0. Then the third components give j = 1. But the first
components don’t check.

One.l.2.22  (a) Let c be the number of acres of corn, s be the number of acres of soy, and a be the number
of acres of oats.

c+ s+ a= 1200 —20p14p> ¢+ s+ a= 1200

20c + 50s + 12a =40000 - 30s —8a=16000
To describe the solution set we can parametrize using a.
c 20000/30 —38/30
{[s|=/16000/30|+| 8/30 |a|acR}
a 0 1

(b) There are many answers possible here. For instance we can take a = 0 to get ¢ = 20000/30 ~ 666.66

and s = 16000/30 ~ 533.33. Another example is to take a = 20000/38 = 526.32, giving ¢ = 0 and
s = 7360/38 ~ 193.68.

(c) Plug your answers from the prior part into 100c¢ 4+ 300s + 80a.

One.l.2.23 This system has 1 equation. The leading variable is x;, the other variables are free.

—1 —1
1 0
i . [x++] . [x]x2.xneR}
0 1
One.l.2.24  (a) Gauss’s Method here gives
1 2 0 —1]a 5 1T 2 0 -1 a
201 0 b| Elo 4 1 2 |-2a+b
110 2 |c e 0 -1 0 3| —a+c

_4
NS
o
\
-
o)

—(1/4)p2+p3
—

o
|
A
-
)

—2a+b

0O 0 —=1/4 5/2|—(1/2)a—(1/4)b+¢c
leaving w free. Solve: z = 2a+ b —4c+ 10w, and —4y = —2a+b — (2a+ b —4c + 10w) — 2w so
y=a—c+3w,and x=a—2(a—c+3w) +w=—a+ 2c — 5w. Therefore the solution set is this.

—a+2c -5
a—c 3
Hoarpac| tro|WIver)
0 1
(b) Pluginwitha=3,b=1, and c = —2.
—7 -5
5 3
{ 15 + 10 W‘WER}
0 1

One.l.2.25 Leaving the comma out, say by writing aj,3, is ambiguous because it could mean a; 3 or ajz,3.
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2 3 45 1T -1 1 -1
345 6 1 1 -1 1
One.l.2.26  (a) 45 ¢ 7 (b) 1 1
56 7 8 —1 1 -1 1
1 4
2
onel227 (@) [2 5| () N2 @o 1o
-3 1 10 5
3 6
One.l.2.28  (a) Plugging in x = 1 and x = —1 gives
a+b+c=2 7&)[32 a+ b+c=2
a—b+c=6 —2b =4

so the set of functions is {f(x) = (4 —c)x2 —2x +¢ ‘ c e R}
(b) Putting in x = 1 gives
a+b+c=2
so the set of functions is {f(x) = (2—b—c)x? +bx+c¢ | b,c € R}

One.l.2.29 On plugging in the five pairs (x,y) we get a system with the five equations and six unknowns a,
..., f. Because there are more unknowns than equations, if no inconsistency exists among the equations
then there are infinitely many solutions (at least one variable will end up free).

But no inconsistency can exist because a =0, ..., f = 0 is a solution (we are only using this zero
solution to show that the system is consistent —the prior paragraph shows that there are nonzero solutions).

One.l.2.30  (a) Here is one— the fourth equation is redundant but still OK.

x+y— z+ w=0

y— z =0
224+ 2w =0
z4+ w=0
(b) Here is one.
xX+y—z+w=0
w=0
w=0
w=0

(c) This is one.
x+y—z+w=0
x+y—z4+w=0
x+y—z+w=0
XxX+y—z+w=0
One.l.2.31 This s how the answer was gien in the cited source. My solution was to define the numbers
of arbuzoids as 3-dimensional vectors, and express all possible elementary transitions as such vectors, too:

R: 13 —1 —1 2
G: 15 Operations: | —1 |, 2],and | —1
B: 17 2 -1 —1
Now, it is enough to check whether the solution to one of the following systems of linear equations exists:
13 —1 —1 2 0 0 45
5+x|-1+y] 2|+|-1]=] 0 (or [45 | or | O))
17 2 —1 —1 45 0 0
Solving
-1 -1 2|13 -1 -1 2|13
-1 2 —1|-15 ;p]‘—};’: EALS 0 3 -3| =2
2 -1 -1 28 0o 0 0
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gives y + 2/3 = z so if the number of transformations z is an integer then y is not. The other two systems
give similar conclusions so there is no solution.
One.l.2.32 This s how the answer was given in the cited source.
(a) Formal solution of the system yields

. a’—1 _ —a’+a
Ta2-1 YT e
Ifa+1#0and a—1+#0, then the system has the single solution
_a*ta+] _ —a
a+1 YT arr
If a=—1, orif a = +1, then the formulas are meaningless; in the first instance we arrive at the system
—x+y=1
x—y=1
which is a contradictory system. In the second instance we have
x+y=1
x+y=1

which has an infinite number of solutions (for example, for x arbitrary, y =1 —x).
(b) Solution of the system yields

X_a“—] _—d’+a
a1 LI
Here, is a® — 1 # 0, the system has the single solution x =a? +1,y=—a. Fora=—1and a =1, we

obtain the systems
—x+y=-—1 x+y=1
x—y= 1 x+y=1
both of which have an infinite number of solutions.

One.l.2.33 This is how the answer was given in the cited source. Let u, v, x, y, z be the volumes in cm?
of Al, Cu, Pb, Ag, and Au, respectively, contained in the sphere, which we assume to be not hollow. Since
the loss of weight in water (specific gravity 1.00) is 1000 grams, the volume of the sphere is 1000 cm?.
Then the data, some of which is superfluous, though consistent, leads to only 2 independent equations, one
relating volumes and the other, weights.

u+ v+ X+ y+ z =1000
2.7u+8.9v + 11.3x + 10.5y + 19.32 = 7558
Clearly the sphere must contain some aluminum to bring its mean specific gravity below the specific
gravities of all the other metals. There is no unique result to this part of the problem, for the amounts of
three metals may be chosen arbitrarily, provided that the choices will not result in negative amounts of
any metal.
If the ball contains only aluminum and gold, there are 294.5 cm? of gold and 705.5 cm? of aluminum.
Another possibility is 124.7 cm? each of Cu, Au, Pb, and Ag and 501.2 cm? of Al

One.l.3: General = Particular + Homogeneous

One.l.3.14 For the arithmetic to these, see the answers from the prior subsection.

(a) This is the solution set
6 -2
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Here are the particular solution and the solution set for the associated homogeneous system.

((6)) and {<_$> y |y e R}

Comment. Students are sometimes confused on two points here. First, the set S given above is equal to

this set
T:{<?)+<$>y|y€R}

because the two sets contain the same members. All of these are correct answers to “What is a particular

sotion®” B () () ()

The second point of confustion is that the letter we use in the set doesn’t matter. This set also equals S.

6 —2
U—{<O> —l—( 1>1J.|LL€]R}
0
(3)>
The particular solution and the solution set for the associated homogeneous system are

() == o)

(b) The solution set is

(c) The solution set is

4 —1
{11+ 11 x3 | x3 € R}
0 1
A particular solution and the solution set for the associated homogeneous system are
4 —1
-1 and 11 x3 | x3 € R}
0 1
(d) The solution set is a singleton
1
{{1]}
1
A particular solution and the solution set for the associated homogeneous system are here.
1 0
1 {10]}
1 0
(e) The solution set is
5/3 -1/3 -2/3
{ 2/(3) + 2/? z+ 1/3 w’z,weR}.
0 0 1
A particular solution and the solution set for the associated homogeneous system are
5/3 —-1/3 -2/3
2/?(; and { 2/? z+ ]/g w | z,w € R}.

0 0 1
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(f) This system’s solution set is empty. Thus, there is no particular solution. The solution set of the
associated homogeneous system is

—1 —1
2 3

{ N I wlz,weR}L
0 1

One.l.3.15 The answers from the prior subsection show the row operations.
(a) The solution set is

2/3 1/6
{1-=1/31+1|2/3 Z‘ZGR}.
0 1
A particular solution and the solution set for the associated homogeneous system are
2/3 1/6
-1/3 and {|2/3|z | z € R}.
0 1
(b) The solution set is
1 1
{ 3 + _] z | z € R}
0 0

A particular solution and the solution set for the associated homogeneous system are
1

—_

z and { _$ z | z € R}.
0 0
(c) The solution set is
0 —1 —1
{ 8 + ? z+ 7; w|z,weR}L
0 0 1
A particular solution and the solution set for the associated homogeneous system are
0 —1 —1
8 and { (]) z+ 7(1) w]z,weR}.
0 0 1
(d) The solution set is
1 —5/7 —-3/7 —1/7
0 —8/7 —=2/7 4/7
{{o] + 1]c+ 0fd+ 0fel|cdecR}
0 0 1 0
0 0 0 1
A particular solution and the solution set for the associated homogeneous system are
1 —5/7 —3/7 —1/7
0 —8/7 —2/7 4/7
0| and { T{c+ 0ld+ 0|elc,decR})
0 0 1 0
0 0 0 1



Answers to Ezercises 15

One.l.3.16 Just plug them in and see if they satisfy all three equations.

(a) No.
(b) Yes.
(c) Yes.
One.l.3.17 Gauss’s Method on the associated homogeneous system gives
1T -1 0 110 1 -1 0 110 1T -1 0 110
2 3 -1 0fo] A o 5 —1 —2fo0| AT o 5 1 20
0 1 1 1|0 0 1 1 110 0 0 e6/5 7/5|0
so this is the solution to the homogeneous problem:
—5/6
{ —]7765 w‘weR}.
1
(a) That vector is indeed a particular solution, so the required general solution is
0 —-5/6
{ g + 7%2 w|weR})
4 1
(b) That vector is a particular solution so the required general solution is
-5 —5/6
{ 717 + 7]7;2 w|weR}
10 1

(c) That vector is not a solution of the system since it does not satisfy the third equation. No such

general solution exists.
One.l.3.18 The first is nonsingular while the second is singular. Just do Gauss’s Method and see if the

echelon form result has non-0 numbers in each entry on the diagonal.

One.l.3.19 (a) Nonsingular:

ends with each row containing a leading entry.

(b) Singular:
3p1+p2 1 2
—
ends with row 2 without a leading entry.

(c) Neither. A matrix must be square for either word to apply.
(d) Singular.
(e) Nonsingular.
One.l.3.20 In each case we must decide if the vector is a linear combination of the vectors in the set.

(a) Yes. Solve
o) ve () =(?
"\4 \5) " \3
1 12\ api4p. (1 1] 2
(4 5 3) - (o 15)

to conclude that there are ¢; and c; giving the combination.

with
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(b) No. The reduction

2 1| -1 2 1] —1
1 0| o “/2ere: —1/2 1/2 20 g 12012
0 1 1 0 0 2
shows that
1 —1
+c |0 = 0
1 1
has no solution.
(c) Yes. The reduction
1 2 3 411 1 2 3 41 1 12 3 4|1
01 3 23] 2E o 1 3 2 3|01 30 23
4 5 0 110 0 -3 —-12 —-15| -4 00 -3 —9]|5
shows that there are infinitely many ways
cq —10 -9
{ Z = _5/2 + _; C4|C46R}
Cyg 0 1
to write
1 1 2 3 4
3l =c1 |0 +c2|T]|+c3|3]|+cqa]2
0 4 5 0 1

(d) No. Look at the third components.
One.l.3.21 Because the matrix of coefficients is nonsingular, Gauss’s Method ends with an echelon form
where each variable leads an equation. Back substitution gives a unique solution.
(Another way to see the solution is unique is to note that with a nonsingular matrix of coefficients the
associated homogeneous system has a unique solution, by definition. Since the general solution is the sum
of a particular solution with each homogeneous solution, the general solution has (at most) one element.)

One.l.3.22 In this case the solution set is all of R™ and we can express it in the required form

1 0 0
0 1 0
{er ] | +ea|. | ++en|. | ]eryen eR)L
0 0 1
One.l.3.23 Assume §,t € R™ and write
S t
§= and t=
Sn tn

Also let ai 1x1 + -+ ainxn = 0 be the i-th equation in the homogeneous system.
(a) The check is easy:

aii(s1+t)+- o tain(sn+tn) = (agsi+- -+ ainsa) + (@t +-- + ajntn)
= 0+40.
(b) This one is similar:
ai,1(3s1)+ -+ ain(3sn) =3(ay1s1+ -+ ainsn) =3-0=0.
(c) This one is not much harder:
ai,1(ksy +mty) +-- -+ ayn(ksn +mty) = klayis1+---+aiynsn) +mlai ity +--- + ajntn)
k-04+m-0.
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What is wrong with that argument is that any linear combination of the zero vector yields the zero vector
again.

One.l.3.24 First the proof.

Gauss’s Method will use only rationals (e.g., —(m/n)p; + p;). Thus we can express the solution set
using only rational numbers as the components of each vector. Now the particular solution is all rational.
There are infinitely many (rational vector) solutions if and only if the associated homogeneous system

has infinitely many (real vector) solutions. That’s because setting any parameters to be rationals will
produce an all-rational solution.

Linear Geometry

One.ll.1: Vectors in Space

5 1 4 0
Onell.ll  (a) (1> (b) <_2> (| © (d [0
-3 0

One.ll.1.2  (a) No, their canonical positions are different.

) 0

(b) Yes, their canonical positions are the same.

1
—1
3
One.ll.1.3 That line is this set.
-2 7
{ : + _z t|teR}
0 4
Note that this system
—2+7t=1
14+9t=0
1-2t=2
0+4t=1

has no solution. Thus the given point is not in the line.
One.ll.1.4  (a) Note that

2 1 1 3 1 2
2 1 1 1 11 0
21 | 5 -3 ol | 5| |-5
0 —1 1 4 —1 5
and so the plane is this set.
1 1
{ 1 + ] t+ s | t,s € R}
5 -3 ’
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(b) No; this system

T+1t+2s=0
T+ 1t =0
5—3t—5s=0
—1+1t+55s=0
has no solution.
One.ll.1.5 The vector
2
0
3
is not in the line. Because
2 -1 3
0f— 0]=1]0
3 —4 7
we can describe that plane in this way.
—1 1 3
{{ of+m|1]+n|0o||mneR}
—4 2 7
One.ll.1.6 The points of coincidence are solutions of this system.
t =1+2m
t+ s= 143k
t+3s= 4m
Gauss’s Method
1T 0 0 —2]1 1T 0 0 -2 1 1T 0 0 -2 1
11 =3 o 1] 25 o1 3 20| 2 o1 =3 20
13 0 —4lo) "™ o3 0o —2]-1 00 9 —8|-1
gives k = —(1/9) + (8/9)m, so s = —(1/3) + (2/3)m and t = 1 + 2m. The intersection is this.
1 0 2 1 2
(1] +[3](5+3m)+|0|m|meR}={]|2/3|+[8/3|m|meR}
0 0 4 0 4
One.ll.1.7  (a) The system
1= 1
T+t= 3+s
24+4t=—-2+2s

gives s = 6 and t = §, so this is the solution set.
1
{{ 2/}
10
(b) This system
24+t= 0
t=s+4w
1—t=2s+w
gives t = —2, w = —1, and s = 2 so their intersection is this point.
0
-2
3
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One.ll.1.8  (a) The vector shown

is not the result of doubling

2 —0.5
0]+ 1 1
0 0
instead it is
2 —0.5 1
ol + 11-2=12
0 0 0

which has a parameter twice as large.
(b) The vector

x 2 1,2 1,2
P={ly|=(0]+y- 1| +z- 0] |y,z€eR}
z 0 0 1

is not the result of adding

instead it is

2 —0.5 —0.5 1
o+ 1|1+ of-1=11
0 0 1 1

which adds the parameters.
One.ll.1.9 The “if” half is straightforward. If by —a; =d; — ¢y and b, —a; =d; — ¢, then

\/(b1 —ai)?+ (b2 —a2)? = \/(d1 —c1)? +(d2 —c2)?
so they have the same lengths, and the slopes are just as easy:
bz — az o dz —C2

br—a;  di—ay
(if the denominators are 0 they both have undefined slopes).

For “only if”, assume that the two segments have the same length and slope (the case of undefined slopes
is easy; we will do the case where both segments have a slope m). Also assume, without loss of generality,
that a; < by and that ¢y < dy. The first segment is (a;, az)(b1,b2) ={(x,y) | y =mx+nj, x € [ar..by]}
(for some intercept n¢) and the second segment is (c1,c2)(d1,d2) ={(x,y) | y=mx+ny, x € [c1..d1]}
(for some n;,). Then the lengths of those segments are

V(b1 —an)? 4 (mby + 1) — (may +n1))2 = /(1 4+ m2)(by — ar)2

and, similarly, \/(1 +m2)(d; — c¢q)?. Therefore, |b; — aj| =|d; —cq]. Thus, as we assumed that a; < b;
and ¢y < dy, we have that by —a; =d; —cy.
The other equality is similar.
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One.ll.1.10 We shall later define it to be a set with one element —an “origin”.

One.ll.1.11 This is how the answer was given in the cited source. The vector triangle is as follows, so
W = 3v/2 from the north west.

w

One.ll.1.12 Euclid no doubt is picturing a plane inside of R3. Observe, however, that both R' and R? also
satisfy that definition.

One.ll.2: Length and Angle Measures

One.ll2.11 (@) V32 +12=/10 (b) V5 (c) VI8 (d) 0 (e) V3

One.ll.2.12  (a) arccos(9/v/85) ~ 0.22 radians  (b) arccos(8/+/85) ~ 0.52 radians  (c) Not defined.

One.ll.2.13 We express each displacement as a vector, rounded to one decimal place because that’s the
accuracy of the problem’s statement, and add to find the total displacement (ignoring the curvature of the

earth).
0.0 n 3.8 n 4.0 n 3.3 B 11.1
1.2 —4.8 0.1 56)  \ 2.1
The distance is v11.12 +2.12 =~ 11.3.

One.ll.2.14 Solve (k)(4) + (1)(3) =0 to get k = —3/4.
One.ll.2.15 We could describe the set

X
{y]|]|1x+3y—1z=0}
z
with parameters in this way.
-3 1
{{ "Ju+|0|z]yzeR}
0 1

One.ll.2.16  (a) We can use the x-axis.

W ) ~ 0.79 radians

arccos(
(b) Again, use the x-axis.

MM+ )M+ 1), :
JIV3 ) ~ 0.96 radians
(c) The x-axis worked before and it will work again.
M)+ O o1
Viyn vn

(d) Using the formula from the prior item, lim,, _, arccos(1/y/n) = 7t/2 radians.

arccos(

arccos(

One.ll.2.17 Clearly ujuy + - - - +unuy, is zero if and only if each w; is zero. So only 0cR"is perpendicular
to itself.

One.ll.2.18 Assume that U, V,w € R™ have components wy,...,Un,V1,...,Wn
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(a) Dot product is right-distributive.

wg Vi wi
@+v)ew=10| : [+]|: |-

u‘ﬂ VTL Wn

ur +vq wi

Up +Vn Wn

= (w1 +w )W1 +oo A (Un Fvr)w

( oUW ) + (VW e vawn)

+
(b) Dot product is also left distributive: w .
(c) Dot product commutes.

—

Vew
(T4 V) =we+U+we.V. The proof is just like the prior one.

w Vi Vi w
L =wvi+- -+ UVp =i+ v = | - | e
Uy Vi Vi U

(d) Because 1+ V is a scalar, not a vector, the expression (i - V) - w makes no sense; the dot product of a
scalar and a vector is not defined.

(e) This is a vague question so it has many answers. Some are (1) k(W+V) = (ki) +V and k(U+V) = U+ (kV),
(2) k(u+V) # (ki) « (k¥) (in general; an example is easy to produce), and (3) ||kv| = [kI||V] (the
connection between norm and dot product is that the square of the norm is the dot product of a vector
with itself).

One.ll.2.19  (a) Verifying that (kxX) g =k(X+Y) =X« (k) for k € R and X, § € R™ is easy. Now, for k € R
and V,w € R™", if { = kv then UV = (kV) « V = k(V+ V), which is k times a nonnegative real.

The V = ki half is similar (actually, taking the k in this paragraph to be the reciprocal of the k
above gives that we need only worry about the k = 0 case).

(b) We first consider the @i+ V > 0 case. From the Triangle Inequality we know that .V = || || ||V if
and only if one vector is a nonnegative scalar multiple of the other. But that’s all we need because the
first part of this exercise shows that, in a context where the dot product of the two vectors is positive,
the two statements ‘one vector is a scalar multiple of the other’ and ‘one vector is a nonnegative scalar
multiple of the other’, are equivalent.

We finish by considering the @ +V < 0 case. Because 0 < [i+V] = —(U+V) = (—U) +V and
[E| V]l = [[—& |||V, we have that 0 < (—ti) +V = ||t || ||[V||. Now the prior paragraph applies to give
that one of the two vectors —u and V is a scalar multiple of the other. But that’s equivalent to the
assertion that one of the two vectors i and V is a scalar multiple of the other, as desired.

One.ll.2.20 No. These give an example.

) ) =)

One.ll.2.21 We prove that a vector has length zero if and only if all its components are zero.

Let 4 € R™ have components uj,...,u,. Recall that the square of any real number is greater than or
equal to zero, with equality only when that real is zero. Thus ||t ||2 =uy2+---+uy? is a sum of numbers
greater than or equal to zero, and so is itself greater than or equal to zero, with equality if and only if each
u; is zero. Hence ||t || = 0 if and only if all the components of U are zero.

One.ll.2.22 We can easily check that
(Xl + X2 Y1 +y2)
202
is on the line connecting the two, and is equidistant from both. The generalization is obvious.
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One.ll.2.23 Assume that V € R™ has components vq,...,vy. If V£ 0 then we have this.

2 2
V1 Vn
( v12+-~~+vn2) ( v12+---+vn2>
vi2 V.2
= < 2 : 2>+"'+( 2 = 2>
vic4-o+vn vic+--+vn

=1

If v = 0 then v/|V| is not defined.
One.ll.2.24 For the first question, assume that v € R™ and r > 0, take the root, and factor.

I = )2 o (rvn)2 = 22 4o v = 1
For the second question, the result is r times as long, but it points in the opposite direction in that
W+ (—1)v =0.
One.ll.2.25 Assume that U,V € R™ both have length 1. Apply Cauchy-Schwartz: |G «V| < [T ] |[V] = 1.
To see that ‘less than’ can happen, in R? take

-0 -0

and note that «V = 0. For ‘equal to’, note that .t =1.
One.ll.2.26 Write

uq Vi

Un Vn
and then this computation works.

[G+V >+ [ T—V)* = (w +vi)2+- -+ (Un +vn)?

+ (u1 —V1)2 +- (un _vn)z
:u12 + 2uqvq —|—v12 4+ +un2 + 2unvn —|—vn2
+ug? = 2ugvy Vit o un® = 2un v v
=2+ A und) 22+ vn?)
2 =112
=2 f|” + 2[]v]
One.11.2.27 'We will prove this demonstrating that the contrapositive statement holds: if X # O then there is
ay with Xy #0.
Assume that X € R™. If X £ 0 then it has a nonzero component, say the i-th one x;. But the vector
g € R™ that is all zeroes except for a one in component i gives X« = x;. (A slicker proof just considers
One.ll.2.28 Yes; we can prove this by induction.
Assume that the vectors are in some R¥. Clearly the statement applies to one vector. The Triangle

Inequality is this statement applied to two vectors. For an inductive step assume the statement is true for
n or fewer vectors. Then this
[ty + - U+ Ungr || < T+ + U + [ |

follows by the Triangle Inequality for two vectors. Now the inductive hypothesis, applied to the first

summand on the right, gives that as less than or equal to |[T1| + - + |[Tn|l + [|[Tnetll-
One.ll.2.29 By definition

UV
TS S — CcOos 9
[ 1]

where 0 is the angle between the vectors. Thus the ratio is |cos 0].
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One.ll.2.30 So that the statement ‘vectors are orthogonal iff their dot product is zero’ has no exceptions.

One.ll.2.31 We can find the angle between (a) and (b) (for a,b # 0) with
ab
Vazvel

If a or b is zero then the angle is 7t/2 radians. Otherwise, if a and b are of opposite signs then the angle is

arccos(

7t radians, else the angle is zero radians.

One.ll.2.32 The angle between il and V is acute if LV > 0, is right if ii.V = 0, and is obtuse if & +V < 0.
That’s because, in the formula for the angle, the denominator is never negative.

One.ll.2.33 Suppose that i,V € R™. If i and V are perpendicular then

[+ V[% = (@4 9) ¢ (@4 V) =TT+ 20TV T =TT+ VeV = [T

(the third equality holds because ii«V = 0).

One.ll.2.34 Where 1,V € R"™, the vectors {4V and 1i—V are perpendicular if and only if 0 = (i+V)«(U—V) =
U+ — VeV, which shows that those two are perpendicular if and only if i« =V +V. That holds if and
only if [|@[| = [|¥].

One.ll.2.35 Suppose U € R™ is perpendicular to both v € R™ and w € R™. Then, for any k, m € R we have
this.

e (kV+mw) =k(t«V) + m(t.w) =%k(0) +m(0) =0

One.l.2.36 'We will show something more general: if ||Z1|| = |2z for Z7,Z2 € R™, then Z; + Z, bisects the

angle between z; and 2>

gives

(we ignore the case where Z; and Z, are the zero vector).
The Z; 4+ Z, = 0 case is easy. For the rest, by the definition of angle, we will be finished if we show this.

Zie(zZ1+2Z2) 22+ (Z1 +22)
1Z1[[1Z1 + 220l |22l 121 + 22|
But distributing inside each expression gives
Z1+Z1+ 212> ZreZ1+ 222>
1Z1 1127 + 22| 12211127 + 22|
and 7; + Z; = ||Z1]|* = ||Z2]|* = Z2 + £2, so the two are equal.

One.ll.2.37 We can show the two statements together. Let i,V € R™, write

uq Vi
U= : V=
Un Vo
and calculate.
kwivy + - + kupvn k U-v UV
cos 0 = = =t
S+ o 0, MR RIS
One.ll.2.38 Let
uq Vi Wi
u= , v=1 : w =

Un Vn Wn
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and then
ug kvi mwi
We(iemw) = | fe(f s [+ )
Un kv mwn
uy kvi + mw;
Un kvn + mwy

=uy(kvi + mwq) + -+ un(kvy + mwy)
= kuivi + muywy + - - - + kup vy + mupgwy
= (kwgvi + - + kKupvn) + (Mugwy + - - + muywy)
= k(U V) + m(i-w)
as required.

One.l.2.39 For x,y € RT, set
_ VX " VY
u = Vv =
VY VX

so that the Cauchy-Schwartz inequality asserts that (after squaring)

(VY + Vive)? < (Vv + Vv (VIVY + Vxvx)

2vxyy)? < (x+y)?

X+y
VvXxy 2

N

as desired.
One.l.2.40  (a) For instance, a birthday of October 12 gives this.

( 7> <]O>
12 12
L) ~ 0.17 rad

- T ):arccos(\/mm
{5 ) 1055 )1

(b) Applying the same equation to (9 19) gives about 0.09 radians.
(c) The angle will measure 0 radians if the other person is born on the same day. It will also measure 0 if

0 = arccos(

one birthday is a scalar multiple of the other. For instance, a person born on Mar 6 would be harmonious
with a person born on Feb 4.
Given a birthday, we can get Sage to plot the angle for other dates. This example shows the
relationship of all dates with July 12.
sage: plot3d(lambda x, y: math.acos((x*7+y*12)/(math.sqrt(7++*2+12«*2)*math.sqrt(x*=2+y**2))),
(1,12),(1,31))
The result looks like this.
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(d) We want to maximize this.

(2)-(3)
|| (é) Il (’;‘) ||

)

0 = arccos(

Of course, we cannot take m or d negative and so we cannot get a vector orthogonal to the given one.
This Python script finds the largest angle by brute force.
import math
days={1:31, # Jan
2:29, 3:31, 4:30, 5:31, 6:30, 7:31, 8:31, 9:30, 10:31, 11:30, 12:31}
BDAY=(7,12)
max_res=0
max_res_date=(-1,-1)
for month in range(1,13):
for day in range(1l,days[month]+1):
num=BDAY[0]+*month+BDAY[1]*day
denom=math.sqrt(BDAY[0]**2+BDAY[1]**2)+*math.sqrt(month**2+day+*+*2)
if denom>0:
res=math.acos(min(num+1.0/denom,1))
print "day:",str(month),str(day)," angle:",str(res)
if res>max_res:
max_res=res
max_res_date=(month,day)
print "For ",str(BDAY),'"the worst case is",str(max_res),'"radians on date",str(max_res_date)

print That is ",180*max_res/math.pi, "degrees"
The result is
For (7, 12) the worst case is 0.95958064648 radians on date (12, 1)
That is 54.9799211457 degrees

A more conceptual approach is to consider the relation of all points (month, day) to the point (7,12).
The picture below makes clear that the answer is either Dec 1 or Jan 31, depending on which is further
from the birthdate. The dashed line bisects the angle between the line from the origin to Dec 1, and the
line from the origin to Jan 31. Birthdays above the line are furthest from Dec 1 and birthdays below the
line are furthest from Jan 31.
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One.ll.2.41 This is how the answer was given in the cited source. The actual velocity V of the wind is
the sum of the ship’s velocity and the apparent velocity of the wind. Without loss of generality we may
assume @ and b to be unit vectors, and may write

V=% +sd =" +tb

where s and t are undetermined scalars. Take the dot product first by @ and then by b to obtain

s—t@-b=3a- (¥, —¥)
sG@.b—t="b- (¥, —¥)

Multiply the second by a - B, subtract the result from the first, and find

Substituting in the original displayed equation, we get
[@—(a-b)

V=vi+

One.ll.2.42 We use induction on n.
In the n = 1 base case the identity reduces to

(a1b1)? = (a1?)(b1%) — 0

and clearly holds.
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For the inductive step assume that the formula holds for the 0, ..., n cases. We will show that it then
holds in the n 4 1 case. Start with the right-hand side

(> o) > vuH)y- X (axb; — ajby)’

1< <n+ T<<n+ 1<k<j<nt1
2 2 2 2
=[( Y a)+ani?][( D b +bnir?]
1<G<n 1<G<n
2 2
—[ Z (axb; —ajbi)” + Z (kb1 —ans1bi)”]
1<k<j<n T<k<n
2 2 2 2 2 2 2 2
= ( Z a;”) ( Z b;%) + Z bj“ani1” + Z a°bng1” + ang1 bnga
1<<n 1<<n 1<<n 1<<n
2 2
- Z (axb; —ajby)” + Z (akbni+1 — ani1bi)’]
1<k<j<n 1<k<n
_ 2 2\ L 2
*( Z aj )( Z b; ) Z (aka ank)
1<<n 1<<n 1<k<j<n
2 2 2 2 2 2
+ Z bj“ani1” + Z a5 bnt1” + ang1 bng
1<G<n 1<G<n
2
- Z (akbni1 — ani1by)
1<k<n

and apply the inductive hypothesis

= ( Z aibi)2+ Z b2 ani1? + Z a5%bn41° + an1Pbngr?

1<sn 1<<n 1<<n
2 2 2, 2
—[ E ar“bni1”—2 E axbny1ani1bi + Z Ani17bi?]
Isksn T<kgn 1<k<n
2 2 2
=( > ab) +2( ) abuiraniiby) + anprbags
1<G<n 1<k<n
2
= [( z aibj)+an+1bn+1]
1<<n

to derive the left-hand side.

Reduced Echelon Form

One.lll.1: Gauss-Jordan Reduction

One.lll.1.8 These answers show only the Gauss-Jordan reduction. With it, describing the solution set is
easy.

(a) 1 112 7p1_+>pz 1 1 2 7(£>]p2 1 112 7pz_+>p1 1 01
1 =110 0 —2| -2 0 1|1 0 1|1

(b)10—1472p;+>pz10—] 4 (1@;32 1 0 —1 4
2 2 011 02 2|7 o1 1|,-7/2

(1/3)p1 (1 —=2/3 1/3\ 2/3)p,+01 (1 O 2/15
(17512 (o 1] =310/ 7 \o 1| =310
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(d) A row swap here makes the arithmetic easier.

2 1 o1y 2 1 o] -1 2 1 o] -1
13 1| 5| WEre g g 2|22 o 1 2| s
o 1 2| 5 o 1 2| s 0 72 —1|11,2
2 1 0] -1 1 —1/2 0] -1.2
“Zeetes [y 1 2| 5 (1§25‘ 0 12 5
0 0 —8|—12) ¥e2 1y 0 1| 3,2
1 —1/2 0|12 10 0|12
ERGERCEN I 10 2| ez g g 0| 2
0 0 1| 3,2 00 132
One.lll.1.9 Use Gauss-Jordan reduction.
() 7(1/2]_p>1+pz 2 1 (1/2 o1 1 1/2 1/2 patpr (1 0
0 5/2 2/5 0> 1 0 1
. L T A NN A AW 130\ 10 0
(b) 2510 —6 2 ‘*;éﬁpz o1 —13]" 123§+pz 01 of P24l 1 0
e\ o —2) P o o 1 e o 01 0 0 1
(c)
10 3 1 2 10 3 1 2
‘;lifz 04 —1 o0 3| 204 1 o 3
g 4 1 2 4 00 0 —2 —7
o 10 31 2 10 3 0 —32
( %ﬁfz 01 —1/4 0 3/4| 25" (o 1 —1/4 0 3/4
“72es g 01 72 0 0 o1 72
(d)
1515 1515 151 5
P g 005 6|22 o 1 3 2| "2 0 1 3 2
01 32 005 6 00 1 6/5
. 15 0 195\ 10 0 595
ST o 10 g5 PR {0 1 0 -85
s 01 65 00 1 6/5

One.lll.1.10 For the Gauss’s halves, see the answers to Chapter One’s section 1.2 question Exercise 19.

(a) The “Jordan” half goes this way.

(1@);31 1 1/2 -1/2 1/2 1/2);;}ﬁp1 1 0 —-1/6| 2/3
—(1/3)p2 \O 1 =2/3|-1/3 0o 1 -2/3|-1/3

The solution set is this

2/3 1/6
{[-13|+2/3]|z]|zeR}
0 1

(b) The second half is
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so the solution is this.

1 1
3 -2
{ 0 + ] z|zeR}
0 0
(c) This Jordan half
1 01 1]0
p24pr |O T 0 110
oo o0 o0fo
0 0 0 0}0
gives
0 —1 —1
0 0 —1
{ ol 1 117+ o w|z,w € R}
0 0 1

(of course, we could omit the zero vector from the description).
(d) The “Jordan” half

/e (120 3 1 1|1 w2t (10 5/7 37 171
0 1 8/7 2/7 —4/7|0 0 1 8/7 2/7 —4/7|0

ends with this solution set.

1 —5/7 —-3/7 —-1/7

0 —8/7 —-2/7 4/7
{{o]+ 1]c+ 0fd+ 0fel|c,decR}

0 0 1 0

0 0 0 1

One.lll.1.11 Routine Gauss’s Method gives one:

Csorton 2 1 1 3 9/ 20st0s 2 1 1 3
7(]/m+pg 0 1 -2 -7 — 10 1 -2 -7
SN0 9/2 172 7/2 0 0 19/2 35

and any cosmetic change, like multiplying the bottom row by 2,

2 1 1 3
o1 =2 -7
00 19 70

gives another.

One.lll.1.12 In the cases listed below, we take a,b € R. Thus, some canonical forms listed below actually
include infinitely many cases. In particular, they includes the cases a =0 and b = 0.

o030 o) (0 )

(b)<000<1ab 01 a) [0 0 1 10(1)(1(10)(010)
00 0)\o o0 o0)2loo0 0o)2lo o0 o0)2\o 1 v)2\o 0o 1) \o 01
o o\ /1 a\ /o 1\ /1 0
@ o of, 1o of,[o of, o 1
o 0o/ \o o/ \o o) \o o
0 0 0 1 a b 0 1 a 0 0 1 1 0 a 1 a O 1 0 0
@ o o of,[o o of oo ol [ooof o1 wv|l,loo 1] |01 o0
000/ \o oo/ \ooof \ooof \oo o \ooo/ \oo 1
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One.lll.1.13 A nonsingular homogeneous linear system has a unique solution. So a nonsingular matrix must
reduce to a (square) matrix that is all 0’s except for 1’s down the upper-left to lower-right diagonal, e.g.,

10 0
(:) ?), or 0 1 0f, etc
0 0 1

One.lll.1.14 Tt is an equivalence relation. To prove that we must check that the relation is reflexive, symmetric,
and transitive.

Assume that all matrices are 2x 2. For reflexive, we note that a matrix has the same sum of entries as
itself. For symmetric, we assume A has the same sum of entries as B and obviously then B has the same
sum of entries as A. Transitivity is no harder —if A has the same sum of entries as B and B has the same
sum of entries as C then A has the same as C.

One.lll.1.15 To be an equivalence, each relation must be reflexive, symmetric, and transitive.

(a) This relation is not symmetric because if x has taken 4 classes and y has taken 3 then x is related to
y but y is not related to x.

(b) This is reflexive because x’s name starts with the same letter as does x’s. It is symmetric because if
x’s name starts with the same letter as y’s then y’s starts with the same letter as does x’s. And it is
transitive because if x's name starts with the same letter as does y’s and y’s name starts with the same
letter as does z's then x’s starts with the same letter as does z’s. So it is an equivalence.

One.lll.1.16  (a) The p; <> p; operation does not change A.

(b) For instance,
1 2 7pﬁ>p 1 O 0 pip}I O O
3 4 3 4 3 4

leaves the matrix changed.
(c) If i #j then

a1 - Qin ai i Ain
kpi+pj
— :
a1 Qin kai1+aj,1 -0 Kain +
ai1 A Qin
—kpitpj
— ;
—kai1 +kair + a5 o0 —Kagn +kain +ajn

does indeed give A back. (Of course, if i = j then the third matrix would have entries of the form
—k(kai,j + (li,]') +kai; + (li,]'.)

One.lll.2: The Linear Combination Lemma

One.lll.2.10 Bring each to reduced echelon form and compare.
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74E)p2 1 2

0 0
Pﬂ)z 1 2 ,zgm 1 0
0 1 0 1

The two reduced echelon form matrices are not identical, and so the original matrices are not row
equivalent.
(b) The first is this.

(a) The first gives

while the second gives

1 0o 2 2 1 0 2
“\0 -1 -5 O 0 0 0
The second is this.
1 0 2 1 0 2
g Lo 2 10| 22 0 1 s
0 0 0 0 0 0

These two are row equivalent.
(c) These two are not row equivalent because they have different sizes.

(d) The first,
pi+po2 (11 1\ (/32 (1 1T 1Y —p24p: (1 0 O
_><033>_><o11>_><o11)

pigz 2 2 5 (]/2)9] 1 1 5/2 —pP2+pP1 1 0 ]7/6
(o 3 1) ame\0 1 —173) 7 \o 1 —1/3
These are not row equivalent.

(e) Here the first is

and the second.

while this is the second.
P14>p2 1 -1 1 pP2+p1 1
— <o 1 z) - (o

One.lll.2.11 First, the only matrix row equivalent to the matrix of all 0’s is itself (since row operations have

1 «a
0 0
b ba
c ca
(where a,b,c € R, and b and c are not both zero)
Next, the matrices that reduce to
(o

- O
N W
N—

These are not row equivalent.

no effect).
Second, the matrices that reduce to

have the form

o

have the form

-~
o O
(o]
~
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o)

are the nonsingular matrices. That’s because a linear system for which this is the matrix of coefficients

(where a,b € R, and not both are zero).
Finally, the matrices that reduce to

will have a unique solution, and that is the definition of nonsingular. (Another way to say the same thing
is to say that they fall into none of the above classes.)

One.lll.2.12  (a) They have the form
a 0
b 0

la 2a
1b 2b
a b
c d

(for a,b,c,d € R) where ad — bc # 0. (This is the formula that determines when a 2 x 2 matrix is

nonsingular.)
1 k
00

One.lll.2.14 No. Row operations do not change the size of a matrix.

where a,b € R.
(b) They have this form (for a,b € R).

(c) They have the form

One.lll.2.13 Infinitely many. For instance, in

each k € R gives a different class.

One.lll.2.15 (a) A row operation on a matrix of zeros has no effect. Thus each such matrix is alone in its
row equivalence class.
(b) No. Any nonzero entry can be rescaled.

One.lll.2.16 Here are two.
1 1 0 and 1T 0 0
0 0 1 0 0 1

One.lll.2.17 Any two n xn nonsingular matrices have the same reduced echelon form, namely the matrix
with all 0’s except for 1’s down the diagonal.

1 0 0
0 1 0
0 0 1

Two same-sized singular matrices need not be row equivalent. For example, these two 2 x 2 singular

03) = ()

One.ll1.2.18 Since there is one and only one reduced echelon form matrix in each class, we can just list the
possible reduced echelon form matrices.

matrices are not row equivalent.

For that list, see the answer for Exercise 12.



One.ll1.2.19  (a) If there is a linear relationship where co is not zero then we can subtract co [§o from both
sides and divide by —co to get ﬁo as a linear combination of the others. (Remark: if there are no other
vectors in the set —if the relationship is, say, 0 = 3-0—then the statement is still true because the zero
vector is by definition the sum of the empty set of vectors.)

Conversely, if Bo is a combination of the others Bo =C 61 +--+cn [gn then subtracting ﬁo from
both sides gives a relationship where at least one of the coefficients is nonzero; namely, the —1 in front
of E;o.

(b) The first row is not a linear combination of the others for the reason given in the proof: in the equation
of components from the column containing the leading entry of the first row, the only nonzero entry is
the leading entry from the first row, so its coefficient must be zero. Thus, from the prior part of this
exercise, the first row is in no linear relationship with the other rows.

Thus, when considering whether the second row can be in a linear relationship with the other rows,
we can leave the first row out. But now the argument just applied to the first row will apply to the
second row. (That is, we are arguing here by induction.)

One.lll.2.20 We know that 4s + ¢ + 10d = 8.45 and that 3s + ¢ + 7d = 6.30, and we’d like to know what
s+ c + d is. Fortunately, s +c + d is a linear combination of 4s + ¢ 4+ 10d and 3s 4+ ¢ + 7d. Calling the
unknown price p, we have this reduction.

41 10845\ 4 1 10 8.45 . 4 1 10 | 845
31 7630 ’(1/4’—"9”2 0 1/4 —1/2| —0.0375 | >23° [0 1/4 —1/2|—0.0375
11 1 “/mertes o 34 —3/2 | p—21125 0 0 0 |p—200

The price paid is $2.00.

One.lll.2.21 (1) An easy answer is this:
0=3.

For a less wise-guy-ish answer, solve the system:

3 =118\ —2/3)p1+p2 (3 —1 8
(2 1 3) - (o 5/3 7/3)
givesy = —7/5 and x = 11/5. Now any equation not satisfied by (—7/5,11/5) will do, e.g., 5x+5y = 3.

(2) Every equation can be derived from an inconsistent system. For instance, here is how to derive
“3x + 2y = 4" from “0 = 5". First,

(3/5)p1 xXpP1
=

0=5 0=3—0=3x

(validity of the x = 0O case is separate but clear). Similarly, 0 = 2y. Ditto for 0 = 4. But now, 0+0 =0
gives 3x + 2y = 4.

One.lll.2.22 Define linear systems to be equivalent if their augmented matrices are row equivalent. The
proof that equivalent systems have the same solution set is easy.

One.lll.2.23  (a) The three possible row swaps are easy, as are the three possible rescalings. One of the six
possible row combinations is kpj + p2:

1 2 3
k-T4+3 k-2+0 k-3+43
1 4 5

and again the first and second columns add to the third. The other five combinations are similar.
(b) The obvious conjecture is that row operations do not change linear relationships among columns.
(c) A case-by-case proof follows the sketch given in the first item.
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Topic: Computer Algebra Systems

1 (a) The commands
> A:=array( [[40,15],
[-50,2511 );
> u:=array([100,50]);
> linsolve(A,u);
yield the answer [1,4].
(b) Here there is a free variable:
> A:=array( [[7,0,-7,0],
[8!11_512] ’
[0,1,-3,0],
[013!_61_1]] );
> u:=array([0,0,0,0]);
> linsolve(A,u);

prompts the reply [ t1,3 t1, t1,3 t].

2 These are easy to type in. For instance, the first

> A:=array( [[2,2],
[1,-411 )
> u:=array([5,0]);
> linsolve(A,u);
gives the expected answer of [2,1/2]. The others are similar.

(a) The answer is x =2 and y = 1/2.

(b) The answer is x =1/2 and y = 3/2.

(c) This system has infinitely many solutions. In the first subsection, with z as a parameter, we got
x = (43—7z)/4 and y = (13 —z)/4. Maple responds with [-12+7 ty, t1,13—4 t4], for some reason
preferring y as a parameter.

(d) There is no solution to this system. When the array A and vector u are given to Maple and it is
asked to linsolve(A,u), it returns no result at all, that is, it responds with no solutions.

(e) The solutions is (x,y,z) = (5,5,0).

(f) There are many solutions. Maple gives [1,—1+ t1,3— t1, t4].

3 As with the prior question, entering these is easy.
(a) This system has infinitely many solutions. In the second subsection we gave the solution set as

{<g>+<‘f)y|yem

and Maple responds with [6 —2 ty, ti].
(b) The solution set has only one member

and Maple has no trouble finding it [0, 1].
(c) This system’s solution set is infinite

and Maple gives [ ty,— t; +3,— t; +4l.



(d) There is a unique solution

and Maple gives [1,1,1].

(e) This system has infinitely many solutions; in the second subsection we described the solution set with
two parameters

5/3 —-1/3 —2/3
2/3 2/3 1/3

{ o LT ] o I | z,w € R}
0 0 1

as does Maple 3—2 t; + t2, t, t3,—243 t;1—2 t,].
(f) The solution set is empty and Maple replies to the linsolve(A,u) command with no returned
solutions.

4 1In response to this prompting

> A:=array( [[a,c],
[b,dl] );

> u:=array([p,ql);

> linsolve(A,u);

Maple thought for perhaps twenty seconds and gave this reply.

[_—dp+qc —bp+aq]
—bc+ad’ —bc+ad

Topic: Input-Output Analysis

1 These answers are from Octave.

(a) With the external use of steel as 17789 and the external use of autos as 21243, we get s = 25952,
a=30312.

(b) s =25857, a =305%6

(c) s =25984, a = 30597

2 Octave gives these answers.

(a) s = 24244, a = 30307
(b) s = 24267, a = 30673

3 (a) These are the equations.

(11.79/18.69)s — (1.28/4.27)a = 11.56
—(0/18.69)s + (9.87/4.27)a =11.35
Octave gives s = 20.66 and a = 16.41.
(b) These are the ratios.

1947 ‘ by steel by autos 1958 ‘ by steel by autos
use of steel 0.63 0.09 use of steel 0.79 0.09
use of autos 0.00 0.69 use of autos 0.00 0.70

(c) Octave gives (in billions of 1947 dollars) s = 24.82 and a = 23.63. In billions of 1958 dollars that is
s =32.26 and a = 30.71.



Topic: Accuracy of Computations

1 Scientific notation is convenient to express the two-place restriction. We have .25x1024.67x10° = .25x102.
The 2/3 has no apparent effect.

2 The reduction
—3p1+p2 X+ 2y = 3
—

—8=-7.992
gives a solution of (x,y) = (1.002,0.999).
3 (a) The fully accurate solution is that x = 10 and y = 0.
(b) The four-digit conclusion is quite different.
~(:3454/.0003)01 +92 <.0003 1.556 | 1.569
0 1789 | —1805
4 (a) For the first one, first, (2/3) — (1/3) is .666 66667 —.33333333 = .33333334 and so (2/3) + ((2/3) —
(1/3)) = .666 66667 +.33333334 = 1.0000000. For the other one, first ((2/3) + (2/3)) = .666 66667 +
.666 66667 = 1.3333333 and so ((2/3) + (2/3)) — (1/3) =1.3333333 — 33333333 = .99999997.
(b) The first equation is .333 333 33-x+1.000 000 0-y = 0 while the second is .666 666 67-x+2.0000000-y =
0.
5 (a) This calculation

) = x = 10460, y = —1.009

3 2 1 6

’(f/;’]—"ﬁ"z 0 —(4/3)+2¢ —(2/3)+2¢ | —2+4¢

3o g _(2/3) 426 —(1/3)—¢ | —1+¢
. 3 2 1 6

“(/2eetes g (4/3) 426 —(2/3) + 26 | —2+4¢
0 € —2¢ —¢

gives a third equation of y — 2z = —1. Substituting into the second equation gives ((—10/3) + 6¢) -z =
(—10/3) 4+ 6¢ so z =1 and thus y = 1. With those, the first equation says that x = 1.
(b) The solution with two digits kept

30 x 107 .20 x 107 10 x 107 .60 x 107
J0x 107 20x 1073 .20 x 1073 | .20 x 10!
30x 107 20x 1073 —10x 1073 | .10 x 10!

30 x 107 .20 x 10! 10 x 107 .60 x 101

’(f/?i;“” 0 —13x 10" —.67 % 10° | —.20 x 10!
—(1/3)ertes 0 —67%10° —33x10° | —.10 x 10°
30x 10" 20x 10" .10x 10" | .60 x 10!
—(.67/1.3)p20s 0 13 x 10" —.67 x 100 | —.20 x 10°
0 0 5% 1072 | 31 x 102

comes out to be z=2.1,y = 2.6, and x = —.43.

Topic: Analyzing Networks

1 (a) The total resistance is 7 ohms. With a 9 volt potential, the flow will be 9/7 amperes. Incidentally,
the voltage drops will then be: 27/7 volts across the 3 ohm resistor, and 18/7 volts across each of the
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two 2 ohm resistors.

(b) One way to do this network is to note that the 2 ohm resistor on the left has a voltage drop of 9 volts
(and hence the flow through it is 9/2 amperes), and the remaining portion on the right also has a voltage
drop of 9 volts, and so we can analyze it as in the prior item. We can also use linear systems.

— —
io i

i3
%

Using the variables from the diagram we get a linear system

ivo— 11— 12 =0
i1+ 1,—13=0

2i4 =9
712 =9

which yields the unique solution i; = 81/14, i1 =9/2, i, = 9/7, and i3 = 81/14.

Of course, the first and second paragraphs yield the same answer. Essentially, in the first paragraph
we solved the linear system by a method less systematic than Gauss’s Method, solving for some of the
variables and then substituting.

(c) Using these variables

— — —
io i i3
il L
i6 i5
— —

one linear system that suffices to yield a unique solution is this.

ir— 11— 12 =0
i, — 13— 14 =0

i34+ 14— 15 =0

i + 15 —1 =0

3 =9

31, + 214 + 2i5 =9

3ip + %3 + 2is5 =9

(The last three equations come from the circuit involving iy-11-1ig, the circuit involving ip-i2-i4-i5-i6,
and the circuit with ip-i2-i3-i5-1g.) Octave gives ip = 4.35616, i; = 3.00000, i, = 1.35616, i3 = 0.24658,
iy = 1.10959, i5 = 1.35616, ig = 4.35616.

2 (@) Using the variables from the earlier analysis,

ih— 11— 2= 0
—ig + 14+ 1= 0
514 =20

8i, =20

—511 +81, = 0

The current flowing in each branch is then is i, =20/8 =2.5,1; =20/5=4,and ip =13/2=6.5, all in
amperes. Thus the parallel portion is acting like a single resistor of size 20/(13/2) ~ 3.08 ohms.

(b) A similar analysis gives that is i, = i; = 20/8 = 4 and ip = 40/8 = 5 amperes. The equivalent
resistance is 20/5 = 4 ohms.
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(c) Another analysis like the prior ones gives is i, = 20/12, i1 = 20/11, and 1o = 20(r7 + 12)/(r1712), all
in amperes. So the parallel portion is acting like a single resistor of size 20/1; = r172/(r7 + 12) ohms.
(This equation is often stated as: the equivalent resistance r satisfies 1/r = (1/71) 4+ (1/7r2).)

3 (a) The circuit looks like this.

(b) The circuit looks like this.

4 Not yet done.

5 (a) An adaptation is: in any intersection the flow in equals the flow out. It does seem reasonable in this
case, unless cars are stuck at an intersection for a long time.
(b) We can label the flow in this way.

Shelburne St

Willow Jay Ln
west =

» east

4 Winooski Ave

Because 50 cars leave via Main while 25 cars enter, i; — 25 = i,. Similarly Pier’s in/out balance means
that i, = 13 and North gives i3 + 25 = i;. We have this system.
i1 — 1y = 25
i, —i3 =0
—1 +1i3=-25
(c) The row operations p; + p; and rhos + p3 lead to the conclusion that there are infinitely many
solutions. With i3 as the parameter,

25+13
{| 1 | iz € R}
i3
of course, since the problem is stated in number of cars, we might restrict iz to be a natural number.

(d) If we picture an initially-empty circle with the given input/output behavior, we can superimpose a
z3-many cars circling endlessly to get a new solution.
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(e) A suitable restatement might be: the number of cars entering the circle must equal the number of
cars leaving. The reasonableness of this one is not as clear. Over the five minute time period we could
find that a half dozen more cars entered than left, although the problem statement’s into/out table does
satisfy this property. In any event, it is of no help in getting a unique solution since for that we would
need to know the number of cars circling endlessly.

6 (a) Here is a variable for each unknown block; each known block has the flow shown.

65 55
i
75 40
i, . i3
14
5 50
80 / \ 30
. i .
15 70 7 16

We apply Kirchhoff’s principle that the flow into the intersection of Willow and Shelburne must equal
the flow out to get 17 +25 =1, + 125. Doing the intersections from right to left and top to bottom gives
these equations.
11 —1; = 10
—i + i3 15
iy + 14 5
—13 — 1y + i =-50
i5 —iy;=-10
—ig+1iy;= 30
The row operation p; + p, followed by p, + p3 then p3 + p4 and p4 + ps and finally ps + pg result in
this system.

i1— 1 = 10
—1y +13 = 25
i34+14— 15 = 30
—i5 + 1ig =-20
—ig +1,=-30
0= 0
Since the free variables are i4 and i; we take them as parameters.
i =17 — 30
i5 =1 +20=(i7—30)+20=1,—10
i3=—4+i5+30=—14 + (i —10)+30=—i4 +17 + 20 ()

1L, =13—25=(—4+1,+20)—25=—i4 +1i;—5

1=, +10=(—14 +i;—=5)+10=—i4 +i7 +5
Obviously i4 and iy have to be positive, and in fact the first equation shows that i; must be at least 30.
If we start with i, then the i, equation shows that 0 < iy <1, —5.

(b) We cannot take i; to be zero or else ig will be negative (this would mean cars going the wrong way
on the one-way street Jay). We can, however, take i; to be as small as 30, and then there are many
suitable i4’s. For instance, the solution

(il ) iZ) i3) i4» i5) i6) l7) = (35) 25) 50) 0) 20) O) 30)

results from choosing i = 0.
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Clapter Two
Chapter Two: Vector Spaces

Definition of Vector Space

Two.l.1: Definition and Examples

Two.l.1.17  (a) 0+ Ox + Ox? + 0x3
00 00
(b) (0 00 O)
(c) The constant function f(x) =0
(d) The constant function f(n) =0

7(1) t;) (c) —3e*+2e ™
Two.l.1.19  (a) Three elements are: 14 2x, 2 — 1x, and x. (Of course, many answers are possible.)

The verification is just like Example 1.3. We first do conditions 1-5, from the paragraph of Def-
inition 1.1 having to do with addition. For closure under addition, condition (1), note that where
a+bx,c+ dx € P; we have that (a+bx) + (c+dx) = (a+c¢)+ (b+ d)x is a linear polynomial with real
coefficients and so is an element of P;. Condition (2) is verified with: where a + bx,c + dx € P; then
(a+bx)+(c+dx) = (a+c)+(b+d)x, while in the other order they are (c+dx)+(a+bx) = (c+a)+(d+b)x,
and both a+c=c+aand b+ d=d+b as these are real numbers. Condition (3) is similar: suppose
a+bx,c+ dx,e+ fx € P then ((a+bx)+ (c+dx)) +(e+fx) = (a+c+e)+ (b+ d+ f)x while
(a+bx)+ ((c+dx)+ (e+fx)) = (a+c+e)+ (b+d+f)x, and the two are equal (that is, real number
addition is associative so (a+c)+e=a+(c+e)and (b+d)+f=">b+ (d+f)). For condition (4)
observe that the linear polynomial 0 4+ Ox € Py has the property that (a + bx) + (0 4+ 0x) = a + bx and
(04 0x) + (a + bx) = a + bx. For the last condition in this paragraph, condition (5), note that for any
a+bx € P; the additive inverse is —a—bx € Pq since (a+bx)+(—a—bx) = (—a—bx)+(a+bx) = 0+0x.

We next also check conditions (6)-(10), involving scalar multiplication. For (6), the condition that
the space be closed under scalar multiplication, suppose that r is a real number and a + bx is an element
of P1, and then r(a + bx) = (ra) + (rb)x is an element of Py because it is a linear polynomial with real
number coefficients. Condition (7) holds because (r+s)(a+ bx) = r(a+bx) + s(a+ bx) is true from the
distributive property for real number multiplication. Condition (8) is similar: v((a + bx) + (¢ + dx)) =
r(a+c)+(b+d)x) =r(a+c)+r(b+d)x = (ra+7rc) + (rb + rd)x = r(a + bx) + r(c 4+ dx). For (9)
we have (rs)(a + bx) = (rsa) + (rsb)x = r(sa + sbx) = r(s(a + bx)). Finally, condition (10) is
1(a4+bx) =(1a)+ (1b)x = a + bx.

(b) Call the set P. In the prior item in this exercise there was no restriction on the coefficients but here

Two.l.1.18  (a) 3+2x—x*>  (b) (

we are restricting attention to those linear polynomials where ap — 2a; = 0, that is, where the constant
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term minus twice the coefficient of the linear term is zero. Thus, three typical elements of P are 2 4 1x,
6 + 3x, and —4 — 2x.

For condition (1) we must show that if we add two linear polynomials that satisfy the restriction then
we get a linear polynomial also satisfying the restriction: here that argument is that if a+bx,c+dx € P
then (a + bx) + (c +dx) = (a+c) + (b + d)x is an element of P because (a +¢) —2(b+ d) =
(a—2b)+ (c —2d) =0+ 0 = 0. We can verify condition (2) with: where a 4+ bx,c + dx € Py then
(a+bx)+ (c+dx) = (a+c¢) + (b + d)x, while in the other order they are (¢ + dx) + (a + bx) =
(c+a)+(d+b)x, and both a+c=c+aand b+ d = d + b as these are real numbers. (That is,
this condition is not affected by the restriction and the verification is the same as the verification in
the first item of this exercise). Condition (3) is also not affected by the extra restriction: suppose that
a+bx,c+ dx,e+ fx € P then ((a+bx) + (c+dx)) + (e+fx) = (a+c+e) + (b+ d+ f)x while
(a+bx)+((c+dx)+(e+fx)) = (a+c+e)+(b+d+f)x, and the two are equal. For condition (4) observe
that the linear polynomial satisfies the restriction 0 + Ox € P because its constant term minus twice the
coefficient of its linear term is zero, and then the verification from the first item of this question applies:
0+ 0x € P; has the property that (a+bx)+ (0+0x) = a+bx and (0+0x)+ (a+bx) = a+bx. To check
condition (5), note that for any a + bx € P the additive inverse is —a — bx since it is an element of P
(because a + bx € P we know that a —2b = 0 and multiplying both sides by —1 gives that —a +2b = 0),
and as in the first item it acts as the additive inverse (a+bx)+(—a—bx) = (—a—bx)+ (a+bx) = 0+0x.

We must also check conditions (6)-(10), those for scalar multiplication. For (6), the condition that
the space be closed under scalar multiplication, suppose that r is a real number and a + bx € P (so that
a—2b =0), then r(a+ bx) = (ra) + (rb)x is an element of P because it is a linear polynomial with real
number coefficients satisfying that (ra) —2(rb) = r(a —2b) = 0. Condition (7) holds for the same reason
that it holds in the first item of this exercise, because (r+s)(a+bx) = r(a+bx) + s(a+ bx) is true from
the distributive property for real number multiplication. Condition (8) is also unchanged from the first
item: r((a+bx)+ (c+dx))=r((a+c)+(b+d)x)=r(a+c)+r(b+d)x =(ra+7rc)+ (tb+rd)x =
r{a+bx)+7r(c+dx). Sois (9): (rs)(a+bx) = (rsa) + (rsb)x = r(sa+sbx) = r(s(a + bx)). Finally, so
is condition (10): T(a+ bx) = (1a) + (1b)x = a + bx.

Two.l.1.20 Use Example 1.3 as a guide. (Comment. Because many of the conditions are quite easy to check,

sometimes a person can be left with the sense that they must have missed something. But easy or routine
to do is different from not necessary to do.)

(a) Here are three elements.

G260

For (1), the sum of 2x 2 real matrices is a 2 x2 real matrix. For (2) we consider the sum of two

ab+ef_a+eb+f
c d g h) \c+g d+h

and apply commutativity of real number addition

_e+af+b_ef+ab
" \g4+c h+d/ \g h c d

to verify that the addition of the matrices is commutative. The verification for condition (3), associativity

matrices

of matrix addition, is similar to the prior verification:

a b e f i 3§\ (la+e)+i (b+f)+j
(<c d>+<g h>)+<k 1>_<(c+g)+k (d+h)+l>
a b e f i)y f[a+(e+1) b+ (f+j)
(c d>+<(g h>+<k l>)_(c+(g+k) d+(h+l)>

while
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and the two are the same entry-by-entry because real number addition is associative. For (4), the zero
element of this space is the 2 x 2 matrix of zeroes. Condition (5) holds because for any 2 x 2 matrix A
the additive inverse is the matix whose entries are the negative of A’s, the matrix —1- A.

Condition 6 holds because a scalar multiple of a 2x2 matrix is a 2x 2 matrix. For condition (7) we
have this.

a by ((r+s)a (r+s)b) (ra+sa tb+sb) fa b a b
(r+s)<c d>_<(r+s)c (r+s)d>_<rc+sc rd+sd>_r<c d>+s<c d)

Condition (8) goes the same way.
r( a b n e f )7T ate b+f) [(ra+re rb+rf
c d g h)/ "\c+g d+h) \rc+rg rd+rth

7rab+ref7r(ab+ef)
~\c d g h) c d g h

For (9) we have this.

(rs) a b\ (rsa rsb . sa sb —r(s a b )
c d) \rsc rsd) \sc sd) c d

Condition (10) is just as easy.
1@ by (1-a 1-b) (sa sb
c d) \1-c 1-d4)] \sc sd

(b) This differs from the prior item in this exercise only in that we are restricting to the set T of matrices
with a zero in the second row and first column. Here are three elements of T.

(3260

Some of the verifications for this item are the same as for the first item in this exercise, and below we’ll
just do the ones that are different.
For (1), the sum of 2x 2 real matrices with a zero in the 2,1 entry is also a 2x 2 real matrix with a

ab+ef at+e b+f
0 d 0 h 0 d+h

The verification for condition (2) given in the prior item works in this item also. The same holds for
condition (3). For (4), note that the 2 x 2 matrix of zeroes is an element of T. Condition (5) holds
because for any 2x2 matrix A the additive inverse is the matrix —1 - A and so the additive inverse of a

zero in the 2,1 entry.

matrix with a zero in the 2,1 entry is also a matris with a zero in the 2,1 entry.

Condition 6 holds because a scalar multiple of a 2 x 2 matrix with a zero in the 2,1 entry is a 2x2
matrix with a zero in the 2,1 entry. Condition (7)’s verification is the same as in the prior item. So are
condition (8)’s, (9)’s, and (10)’s.

Two.l.1.21 Most of the conditions are easy to check; use Example 1.3 as a guide.
(a) Three elements are (1 2 3),(2 1 3),and (0 0 0).

We must check conditions (1)-(10) in Definition 1.1. Conditions (1)-(5) concern addition. For

condition (1) recall that the sum of two three-component row vectors

(a b ¢c)+(d e f)=(a+d b4+e c+f)

is also a three-component row vector (all of the letters a,...,f represent real numbers). Verification
of (2) is routine

(a b ¢)+(d e flJ=(a+d b+e c+f)=(d+a e+b f+c)=(d e f)+(a b c)



44

Linear Algebra, by Hefferon

(the second equality holds because the three entries are real numbers and real number addition commutes).
Condition (3)’s verification is similar.

((a b c)+(d e f))+(g h )y=((a+d)+g (b+e)+h (c+f)+1i)

=(a+(d+g) b+(e+h) c+(f+i))=(a b ¢c)+((d e fl+(g h 1)
For (4), observe that the three-component row vector (0 0 0) is the additive identity: (a b c¢)+
(0 0 0)=(a b c). Toverify condition (5), assume we are given the element (a b c) of the set and
note that (—a —b —c) is also in the set and has the desired property: (a b c¢)+(—a —-b —c)=
0 0 0).

Conditions (6)-(10) involve scalar multiplication. To verify (6), that the space is closed under the scalar
multiplication operation that was given, note that r(a b ¢) = (ra rb rc) is a three-component
row vector with real entries. For (7) we compute (r+s)(a b c¢)=((r+s)a (r+s)b (r+s)c)=
(ra+sa tb4+sb rc+sc)=(ra v rc)+(sa sb sc)=r(a b c)+s(a b c¢). Condition (8)
is very similar: r((a b ¢)+(d e f)) =r(a+d b+e c+f)=(r(a+d) r(b+e) r(c+f)) =
(ra+rd tb+re rc+71f) = (ra b 1vc)+ (rd re vf) =7r(a b c¢)+r(d e f). So is the
computation for condition (9): (rs)(a b c¢) = (rsa vsb rsc) =r(sa sb sc) = r(s(a b c)).
Condition (10) is just as routine T(a b ¢)=(1-a 1-b 1-¢)J=(a b ¢).

(b) Call the set L. Closure of addition, condition (1), involves checking that if the summands are members
of L then the sum

a e a+e

b f b+f
+ =

[ g c+g

d h d+h

is also a member of [, which is true because it satisfies the criteria for membership in L: (a +e) + (b +
f)—(c+g)+(d+h)=(a+b—c+d)+(e+f—g+h)=0+0. The verifications for conditions (2), (3),
and (5) are similar to the ones in the first part of this exercise. For condition (4) note that the vector of
zeroes is a member of L because its first component plus its second, minus its third, and plus its fourth,
totals to zero.

Condition (6), closure of scalar multiplication, is similar: where the vector is an element of L,

a ra
b Tb
T =
c TC
d rd

is also an element of L because ra+1b—rc+rd =r(a+b—c+d) =r-0 =0. The verification for
conditions (7), (8), (9), and (10) are as in the prior item of this exercise.

Two.l.1.22 In each item the set is called Q. For some items, there are other correct ways to show that Q is

not a vector space.

(a) It is not closed under addition; it fails to meet condition (1).

1 0 1
0f,]11]1€Q 1140
0 0 0

(b) It is not closed under addition.
1 0 1
0l,[1]€Q 11€Q
0 0 0

(c) It is not closed under addition.

0o (o o)ee (b 3)ee
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(d) It is not closed under scalar multiplication.
T+Ix+1x*€Q  —1-(T+1x+1x*) ¢Q
(e) It is empty, violating condition (4).
Two.l.1.23 The usual operations (vo+vii)+(wWo+wii) = (vo+wo)+(vi+wi)iand r(vo+vii) = (tvo)+(rvy)i
suffice. The check is easy.
Two.l.1.24 No, it is not closed under scalar multiplication since, e.g., 7t- (1) is not a rational number.
Two.l.1.25 The natural operations are (vix +voy +v3z) + (Wix +way +wsz) = (vi +wi)x+ (v +wa)y +
(vs +ws)z and r- (vix +v2y +v3z) = (tv1)x + (rv2)y + (rv3)z. The check that this is a vector space is
easy; use Example 1.3 as a guide.
Two.l.1.26 The ‘4’ operation is not commutative (that is, condition (2) is not met); producing two members
of the set witnessing this assertion is easy.

Two.l.1.27  (a) It is not a vector space.

1 1 1
(T+1)- (0] #]0l+]0
0 0 0
(b) It is not a vector space.
1 1
1-101#]0
0 0

Two.l.1.28 For each “yes” answer, you must give a check of all the conditions given in the definition of a vector
space. For each “no” answer, give a specific example of the failure of one of the conditions.
(a) Yes.
(b) Yes.
(c) No, this set is not closed under the natural addition operation. The vector of all 1/4’s is a member of
this set but when added to itself the result, the vector of all 1/2’s, is a nonmember.
(d) Yes.
(e) No, f(x) = e 2* +(1/2) is in the set but 2 - f is not (that is, condition (6) fails).

Two.l.1.29 It is a vector space. Most conditions of the definition of vector space are routine; we here
check only closure. For addition, (f1 + f2)(7) = f1(7) + 2(7) = 04+ 0 = 0. For scalar multiplication,
(r-f)(7)=rf(7) =r0=0.

Two.l.1.30 We check Definition 1.1.

First, closure under ‘+’ holds because the product of two positive reals is a positive real. The second
condition is satisfied because real multiplication commutes. Similarly, as real multiplication associates, the
third checks. For the fourth condition, observe that multiplying a number by 1 € R™ won’t change the
number. Fifth, any positive real has a reciprocal that is a positive real.

The sixth, closure under ‘-, holds because any power of a positive real is a positive real. The seventh
condition is just the rule that v'™* equals the product of v" and v¢. The eight condition says that
(vw)" =v™W". The ninth condition asserts that (v")® =v"s. The final condition says that v! =v.

Two.l.1.31 (@) No: 1-(0,1)+1-(0,1) A (1+1)-(0,1).

(b) No; the same calculation as the prior answer shows a condition in the definition of a vector space that
is violated. Another example of a violation of the conditions for a vector space is that 1-(0,1) # (0, 1).

Two.l.1.32 It is not a vector space since it is not closed under addition, as (x?) + (1 +x — x?) is not in the
set.

Two.l.1.33  (a) 6

(b) nm
(c) 3
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(d) To see that the answer is 2, rewrite it as

{<;1 —aO—b> | a,b € R}

Two.l.1.34 A wvector space (over R) consists of a set V along with two operations ‘+’ and  subject to
these conditions. Where v,w € V, (1) their vector sum V ¥ W is an element of V. If i,V,Ww € V then
(2) VFW =wFvand (3) VFW) Fi=vF (WFi). (4) Thereis a zero vector 0 € V such that v+ 0 =V
for all v € V. (5) Bach v € V has an additive inverse w € V such that w £ v = 0. If , s are scalars, that
is, members of R), and ¥, W € V then (6) each scalar multiple r-Visin V. If r,s € R and V,Ww € V then
() (r+s)-V=1-V+s-V,and (8) r7(V+W) =17V +1-W, and (9) (rs) "V = r7(s V), and (10) 17V = V.

so that there are two parameters.

Two.l.1.35  (a) Let V be a vector space, assume that v € V, and assume that w € V is the additive inverse
of ¥ so that w + v = 0. Because addition is commutative, 0 = W + v = ¥ + W, so therefore ¥ is also the
additive inverse of w.

(b) Let V be a vector space and suppose v, §,t € V. The additive inverse of ¥V is —V so ¥+ § = V + T gives
that —V +V + § = —V + V + {, which says that 0+ § =0+t and so § = .

Two.l.1.36 Addition is commutative, so in any vector space, for any vector vV we have that v =v + 0=0+".

Two.l.1.37 1t is not a vector space since addition of two matrices of unequal sizes is not defined, and thus
the set fails to satisfy the closure condition.

Two.l.1.38 Each element of a vector space has one and only one additive inverse.
For, let V be a vector space and suppose that vV € V. If Wy, W, € V are both additive inverses of V then
consider wq + V + W;. On the one hand, we have that it equals Wy + (V+wW3) = w1 + 0 =W;. On the
other hand we have that it equals (W1 +V) + W, = 0+ Wy = Ws. Therefore, Wi = W;.

Two.1.1.39  (a) Every such set has the form {r-V+s -w ] 1, s € R} where either or both of ¥, may be 0.
With the inherited operations, closure of addition (r1V + s1W) + (r12V 4+ s2W) = (17 + 12)V + (81 + s2)W
and scalar multiplication c(rV + sw) = (cr)V + (cs)Ww are easy. The other conditions are also routine.

(b) No such set can be a vector space under the inherited operations because it does not have a zero
element.

Two.l.1.40 Assume that ¥ € V is not 0.
(a) One direction of the if and only if is clear: if r =0 then r-V = 0. For the other way, let r be a nonzero
scalar. If vv = 0 then (1/r) - v = (1/7) - O shows that ¥ = 0, contrary to the assumption.
(b) Where 1,7, are scalars, 11V = 1,V holds if and only if (r; — r,)¥ = 0. By the prior item, then

T — T2 = 0.
(c) A nontrivial space has a vector v # 0. Consider the set {k -V ] k € R}. By the prior item this set is
infinite.

(d) The solution set is either trivial, or nontrivial. In the second case, it is infinite.

Two.l.1.41 Yes. A theorem of first semester calculus says that a sum of differentiable functions is differentiable
and that (f+g)’ = f'+¢’, and that a multiple of a differentiable function is differentiable and that (r-f)’ = r{’.

Two.l.1.42 The check is routine. Note that ‘1’ is 1 + 01 and the zero elements are these.
(@) (0+0i) + (04 0i)x + (0 + 0i)x?
©) <o+01 0+0i
0+0i 0401

Two.l.1.43 Notably absent from the definition of a vector space is a distance measure.
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Two.l.1.44  (a) A small rearrangement does the trick.

(Vi + (V2 +V3)) +V4 =

=V + (V2 +V3) + Vs
Each equality above follows from the associativity of three vectors that is given as a condition in the
definition of a vector space. For instance, the second ‘=" applies the rule (W +W,)+W3 = Wy + (W, +W3)
by taking w; to be V; 4V, taking W, to be V3, and taking w3 to be Vj.
(b) The base case for induction is the three vector case. This case V1 + (V2 +V3) = (V] +V2) + V3 is one
of the conditions in the definition of a vector space.

For the inductive step, assume that any two sums of three vectors, any two sums of four vectors, ...,
any two sums of k vectors are equal no matter how we parenthesize the sums. We will show that any
sum of k + 1 vectors equals this one ((--- ((V7 +V2) +V3) + -+ ) +Vx) + V1.

Any parenthesized sum has an outermost ‘+’. Assume that it lies between vV, and V1 so the sum
looks like this.

(V1 Vm o) (o Vit o Vet o)
The second half involves fewer than k+ 1 additions, so by the inductive hypothesis we can re-parenthesize
it so that it reads left to right from the inside out, and in particular, so that its outermost ‘+’ occurs
right before Vi, 1.

=0V Vi ) (G (Vi +Vimg2) + 0 V) + Vi)
Apply the associativity of the sum of three things

= (B T ) (o T +Tm2) 0 ) + Vi
and finish by applying the inductive hypothesis inside these outermost parenthesis.
Two.l.1.45 Let ¥ be a member of R? with components vi and v,. We can abbreviate the condition that both
components have the same sign or are 0 by vyv, > 0.
To show the set is closed under scalar multiplication, observe that the components of rV satisfy
(rvi)(rv2) = r3( 2
To show the set is not closed under addition we need only produce one example. The vector with

vivy) and 12 > 0 so 2viv; > 0.
components —1 and 0, when added to the vector with components 0 and 1 makes a vector with mixed-sign
components of —1 and 1.
Two.l.1.46  (a) We outline the check of the conditions from Definition 1.1.
Additive closure holds because if ap + a; + a2 =0 and bo + by + by =0 then

(ao 4+ arx + azx?) + (bo 4+ byx 4 bax?) = (ap + bo) + (ay + by)x + (az + ba)x?
is in the set since (ag + bg) + (a1 + by) + (az + by) = (ag + a7 + az) + (bo + by + by) is zero. The
second through fifth conditions are easy.
Closure under scalar multiplication holds because if ap + a; + a; = 0 then
T (ap + ar1x 4+ axx?) = (rag) + (ra;)x + (raz)x?
is in the set as rap + ra; +raz =r(ap + a; + az) is zero. The remaining conditions here are also easy.

(b) This is similar to the prior answer.

(c) Call the vector space V. We have two implications: left to right, if S is a subspace then it is closed
under linear combinations of pairs of vectors and, right to left, if a nonempty subset is closed under linear
combinations of pairs of vectors then it is a subspace. The left to right implication is easy; we here sketch
the other one by assuming S is nonempty and closed, and checking the conditions of Definition 1.1.

First, to show closure under addition, if 57,55 € S then §7+5> € Sas s7+5> =1-87+1-85. Second,
for any §7,5> € S, because addition is inherited from V, the sum §7 + §, in S equals the sum §7 4 55 in
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V and that equals the sum s5 4+ 87 in V and that in turn equals the sum §5 + §7 in S. The argument for
the third condition is similar to that for the second. For the fourth, suppose that s is in the nonempty
set S and note that 0-5§=0 € S; showing that the 0 of V acts under the inherited operations as the
additive identity of S is easy. The fifth condition is satisfied because for any §' € S closure under linear
combinations shows that the vector 0 -0 + (—1) - Sis in S; showing that it is the additive inverse of §
under the inherited operations is routine.

The proofs for the remaining conditions are similar.

Two.l.2: Subspaces and Spanning Sets

Two.1.2.20 By Lemma 2.9, to see if each subset of M., is a subspace, we need only check if it is nonempty
and closed.
(a) Yes, we can easily checke that it is nonempty and closed. This is a parametrization.

10 0 0
{a(o 0>+b<0 1>{a,beR}

By the way, the parametrization also shows that it is a subspace, since it is given as the span of the
two-matrix set, and any span is a subspace.
(b) Yes; it is easily checked to be nonempty and closed. Alternatively, as mentioned in the prior answer,
the existence of a parametrization shows that it is a subspace. For the parametrization, the condition
a+ b =0 can be rewritten as a = —b. Then we have this.

-b 0 -1 0
{(0 b)\beR}_{b<o 1>\beR}
(c) No. It is not closed under addition. For instance,
50 n 5 0) (10 0
0 0 0 0/ \o0o0

is not in the set. (This set is also not closed under scalar multiplication, for instance, it does not contain

the zero matrix.)
-1 0 0 1
{b( 0 1)4—0(0 O)‘b,ceR}

(d) Yes.
Two.l.2.21 No, it is not closed. In particular, it is not closed under scalar multiplication because it does not
contain the zero polynomial.

Two.1.2.22  (a) Yes, solving the linear system arising from

1 0 2
1|0+ 0] =]0
0 1 1
givesty =2 and r; = 1.
(b) Yes; the linear system arising from 77 (x?) 4+ 12(2x +x?) +r3(x +x3) = x — x>
2ro4+r13= 1
™+ T2 = 0
T3 = —1

gives that —1(x%) + 1(2x +x?) — 1(x +x3) = x — x>.
(c) No; any combination of the two given matrices has a zero in the upper right.
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Two.l.2.23  (a) Yes; it is in that span since 1-cos?x + 1 -sin® x = f(x).
(b) No, since 171 cos? x 412 sin? x = 3+ x2 has no scalar solutions that work for all x. For instance, setting
x to be 0 and 7t gives the two equations vy -1+ 1,-0=3and r; -1 4+712-0=3+ 72, which are not
consistent with each other.
(c) No; consider what happens on setting x to be 7t/2 and 37/2.
(d) Yes, cos(2x) = 1-cos?(x) — 1 - sin?(x).

Two.l.2.24  (a) Yes, for any x,y,z € R this equation

1 0 0 X
T 0| +12|2]+713[0] =]y
0 0 3 z
has the solution r1 =x, r2 =y/2, and r3 = z/3.
(b) Yes, the equation
2 1 0 X
T O +12|T]|+13[0] =]y
1 0 1 z
gives rise to this
2r1 + 12 =X 2ri+1 =%
r —y *(1/2)40>l+93 (1/2&;%)3 - —y
T +r3=12 3 =—(1/2)x+(1/2)y +z

so that, given any x, y, and z, we can compute that r3 = (—-1/2)x + (1/2)y + 2z, r2 =y, and 1y =
(1/2)x — (1/2)y.
(c) No. In particular, we cannot get the vector
0
0
1
as a linear combination since the two given vectors both have a third component of zero.
(d) Yes. The equation
1 3 —1 2 X
1|0+ 1] +713 Ol+rm 1] =1y
1 0 0 5 z
leads to this reduction.
1 3 -1 2|x 1 3 -1 2 X
01 0 1 y| 25ty 1 o y
10 0 5|z 0 0 1T 6|—x+3y+z
We have infinitely many solutions. We can, for example, set r4 to be zero and solve for r3, 12, and 17 in
terms of x, y, and z by the usual methods of back-substitution.
(e) No. The equation

2 3 5 6 X
|1 +12]0]+13]| 1| +14]|0] =1y
1 1 2 2 z
leads to this reduction.
2 35 6|x 23 5 6 X
10 1 0y ARz m(3Retes 1y 35 35 3 —(1/2)x+y
11 2 2|z) V/Aerres 0 0 0 0 |-(13x—(1/3y+z

This shows that not every three-tall vector can be so expressed. Only the vectors satisfying the restriction
that —(1/3)x — (1/3)y +z = 0 are in the span. (To see that any such vector is indeed expressible, take
T3 and 14 to be zero and solve for vy and 1, in terms of x, y, and z by back-substitution.)
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Two.l.2.25 (a) {(c b «¢) | b,ceR}={b(0 1 0)+c(1 0 1) ] b,c € R} The obvious choice for the
set that spansis {(0 1 0),(1 0 1)L
(b) {<_Cd Z |b,c,deR} ={b g (])> +c (? g) +d <_(]) ?) | b,c,d € R} One set that spans
this space consists of those three matrices.
(c) The system
a+3b =0
2a —c—d=0
gives b=—(c+ d)/6 and a = (c + d)/2. So one description is this.

12 ~1/6 12 —1/6
{c( : O>+d< 0 ]>|c,d€R}

That shows that a set spanning this subspace consists of those two matrices.
(d) The a = 2b —c gives {(2b—c) + bx +¢cx® | b,c € R} = {b(2+x) + c(—T1+x3) | b,c € R}. So the
subspace is the span of the set {2 +x,—1+x>}.
(e) The set {a + bx + cx? ‘ a4+ 7b +49c = 0} parametrized as {b(—7 + x) + c(—49 + x?) ‘ b,c € R} has
the spanning set {—7 4+ x, —49 4+ x2 1.

Two.l.2.26 Each answer given is only one out of many possible.
(a) We can parametrize in this way

X 1 0
{{o] |xzeR}={x|0]|+z|0|]|xzeR}
z 0 1
giving this for a spanning set.
1 0
{{o],10|}
0 1
-2/3 -1/3 -2/3 -1/3
(b) Parametrize it with {y 1|+z 0 ‘ y,z € R} to get { 11, 0]k
0 1 0 1
1 —-1/2
-2 0
ORY I ol?
0 1

(d) Parametrize the description as {—aj + ajx + a3x? + a3x® | ar, a3 € R} to get {—1 +x, x> +x3}.
(e) {]?X)XZ)XS)X4}

1 0 0 1 0 0 0 0
ot ¢)-(6 o) (052
Two.1.2.27 Technically, no. Subspaces of R are sets of three-tall vectors, while R? is a set of two-tall vectors.
Clearly though, R? is “just like” this subspace of R3.
X
{ly|[xyeR}
0
Two.l.2.28 Of course, the addition and scalar multiplication operations are the ones inherited from the
enclosing space.
(a) This is a subspace. It is not empty as it contains at least the two example functions given. It is closed
because if fq,f, are even and cy, ¢, are scalars then we have this.

(c1f1 4+ caf2) (—x) = c1 f1(—x) + c2 fa(—x) = c1 f1(x) + c2 f2(x) = (c1f1 + c2f2) (x)
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(b) This is also a subspace; the check is similar to the prior one.
Two.l.2.29 It can be improper. If Vv = 0 then this is a trivial subspace. At the opposite extreme, if the vector
space is R' and V # 0 then the subspace is all of R'.
Two.1.2.30 No, such a set is not closed. For one thing, it does not contain the zero vector.

Two.1.2.31  (a) This nonempty subset of My, is not a subspace.

12\ (5 6
AZ{(s 4>’<7 8>}

One reason that it is not a subspace of My, is that it does not contain the zero matrix. (Another reason
is that it is not closed under addition, since the sum of the two is not an element of A. It is also not

closed under scalar multiplication.)
1 3

(b) This set of two vectors does not span R?.
No linear combination of these two can give a vector whose second component is unequal to its first
component.

Two.1.2.32 No. The only subspaces of R' are the space itself and its trivial subspace. Any subspace S of R
that contains a nonzero member V must contain the set of all of its scalar multiples {r -V ‘ r € R}. But this
set is all of R.

Two.1.2.33 Ttem (1) is checked in the text.

Item (2) has five conditions. First, for closure, if c € R and § € Sthenc-§c€Sasc-§=c-5+0-0.
Second, because the operations in S are inherited from V, for ¢,d € R and § € S, the scalar product
(c+d)-§ in S equals the product (c+d)-§ in V, and that equals ¢-§+d-§ in V, which equals ¢-§+d-§
in S.

The check for the third, fourth, and fifth conditions are similar to the second condition’s check just
given.

Two.l.2.34 An exercise in the prior subsection shows that every vector space has only one zero vector (that
is, there is only one vector that is the additive identity element of the space). But a trivial space has only
one element and that element must be this (unique) zero vector.

Two.l.2.35 As the hint suggests, the basic reason is the Linear Combination Lemma from the first chapter.
For the full proof, we will show mutual containment between the two sets.
subset T of a vector space, [T] D T.

For the other containment, that [[S]] C [S], take m vectors from [S], namely c1,1871,1 + -+ C1,n, 51,11,
..., €1,m81,m + -+ C1,n,,51,n,., and note that any linear combination of those

The first containment [[S]] D [S] is an instance of the more general, and obvious, fact that for any

Ti(c1a81+ e Sy Foo FTm(CimS T m o Fern, STn)
is a linear combination of elements of S
=(rici, )81+ -+ (ricin, )81, -+ mC1,m)S1T,m+ -+ ("mCin, )81 nn
and so is in [S]. That is, simply recall that a linear combination of linear combinations (of members of S)
is a linear combination (again of members of S).

Two.1.2.36  (a) It is not a subspace because these are not the inherited operations. For one thing, in this
space,

o

N e R
I

o o =

while this does not, of course, hold in R3.
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(b) We can combine the argument showing closure under addition with the argument showing closure
under scalar multiplication into one single argument showing closure under linear combinations of two
vectors. If rq,72,%1,%2,Y1,Y2,21,22 are in R then

X1 X2 X1 —711 + 1 X2 — T2+ 1 TIX1 —T1+Taxp — 12+ 1
Ty | +T2 Y2 | = T1Y1 + T2Y2 = T1Y1 +T2Y2
Z1 V%) T121 T2Z) T1Z1 + 71222

(note that the definition of addition in this space is that the first components combine as (r1x; — 11 +
1)+ (rax2 — 12+ 1) — 1, so the first component of the last vector does not say ‘ + 2'). Adding the three
components of the last vector gives r1(x1 —14+y1+2z1)+r2(xa—T14+ys+2z2)+1=1r1-0+12-0+1=1.

Most of the other checks of the conditions are easy (although the oddness of the operations keeps
them from being routine). Commutativity of addition goes like this.

X1 X2 X1 +x2—1 X2 +x7— 1 X2 X1
Vi|+ly2|=| wityz | =| yYyz2+uys =1lyz2 |+ |y
Z1 ) zZ1+ 22 z2 + 29 V%) Z1

Associativity of addition has

X1 X2 X3 (X]+X2—1)+X3—1
Hur [+ ly2)+|ys| = (Y1 +y2) +ys
1 z2 z3 (z1 4+ 22) + 23
while
X1 X2 X3 x1+(x2+x3—1)—1
yi|+({y2|+ys|)= y1 + (Y2 +ys3)
z1 £2) z3 z1 + (22 +23)

and they are equal. The identity element with respect to this addition operation works this way

X 1 x+1—1 X
y|l+10]| = y+0 =1y
z 0 z+0 z
and the additive inverse is similar.
X —x+2 X+ (—x+2)—1 1
y |+ -y = y—y =10
z —z z—z 0

The conditions on scalar multiplication are also easy. For the first condition,

X (r+s)x—(r+s)+1
(r+s)|y| = (r+s)y
z (r+s)z
while
X X x —1+1 sx —s+ 1 (rx—14+1)+(sx—s+1)—1
Tyl +s|y| = TY + Ty + 8y
z z TZ TZ+ Sz
and the two are equal. The second condition compares
X1 X2 X1 +x2—1 T(x1+x2—1)—1+1
r(lyr [+ |y )= vity2 | = (Y1 +y2)
Z1 Z zZ1 + 22 (21 + 22)
with
X1 X2 X — 1T+ 1 ™o — T+ 1 (rxi —r+1)+(mx2—71+1)—1
Ty | 1Yz [ = ™V + TY2 = Y1 +1Y2

Z1 V) TZ1 TZ) rZ1 + 7122
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and they are equal. For the third condition,

X rsx —1s+ 1
(rs) |y | = TSy
z TSZ
while
X sx —s+ 1 rsx —s+1)—1+1
rs|{y|)=r( sy ) = TSY
z sz TSZ

and the two are equal. For scalar multiplication by 1 we have this.

X Ix—1+1 X
Ty = ly = v
z 1z z

Thus all the conditions on a vector space are met by these two operations.
Remark. A way to understand this vector space is to think of it as the plane in R3

X
P={|y||[x+y+z=0}
z

displaced away from the origin by 1 along the x-axis. Then addition becomes: to add two members of

this space,
X1 X2
Y1 ) Y2
Z1 z2

(such that x1 +yi +2z71 =1 and x2 +y2 + z2 = 1) move them back by 1 to place them in P and add as

usual,
x1 — 1 X2 — 1 X1 +x2—2
yr [+ v2 | =] vitu (in P)
Z1 z2 z1 +22

and then move the result back out by 1 along the x-axis.
X1 +x2—1
Y1 +Y2
zZ1 + 22
Scalar multiplication is similar.
(c) For the subspace to be closed under the inherited scalar multiplication, where V is a member of that
subspace,

o
<l
Il

o o o

must also be a member.
The converse does not hold. Here is a subset of R3 that contains the origin

0\ (1
{ofs1of?
0/ \o

(this subset has only two elements) but is not a subspace.
Two.1.2.37  (a) (Vi + V2 +V3) — (V] +V2) = V3

(b) (V1 +V2) — (V1) =V

(c) Surely, V.
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(d) Taking the one-long sum and subtracting gives (V) —v; = 0.
Two.l.2.38 Yes; any space is a subspace of itself, so each space contains the other.

Two.1.2.39  (a) The union of the x-axis and the y-axis in R? is one.
(b) The set of integers, as a subset of R', is one.
(c) The subset {V} of R? is one, where V is any nonzero vector.

Two.l.2.40 Because vector space addition is commutative, a reordering of summands leaves a linear combina-
tion unchanged.

Two.l.2.41 We always consider that span in the context of an enclosing space.

Two.l.2.42 It is both ‘if’ and ‘only if’.

For ‘if’, let S be a subset of a vector space V and assume V € S satisfies V=c87 + -+ + ¢S where
Ci,...,Cn are scalars and S7,...,8, € S. We must show that [S U{V}] = [S].

Containment one way, [S] C [S U{V}] is obvious. For the other direction, [S U{V}] C [S], note that if a
vector is in the set on the left then it has the form dovV + d¢t; + - + dm‘fm where the d’s are scalars and
the t’s are in S. Rewrite that as do(c187 + -+ + cnSn) + dit; + - - - + dmtm and note that the result is a
member of the span of S.

The ‘only if’ is clearly true—adding V enlarges the span to include at least V.

Two.1.2.43  (a) Always.
Assume that A, B are subspaces of V. Note that their intersection is not empty as both contain the
zero vector. If w,s’€ AN B and 1, s are scalars then rV+ sw € A because each vector is in A and so a
linear combination is in A, and v+ sw € B for the same reason. Thus the intersection is closed. Now
Lemma 2.9 applies.
(b) Sometimes (more precisely, only if A C B or B C A).
To see the answer is not ‘always’, take V to be R3, take A to be the x-axis, and B to be the y-axis.

Note that
1 0 1 0
<0>€Aand <]>EB but <O>+<1>¢AUB

as the sum is in neither A nor B.

The answer is not ‘never’ because if A C B or B C A then clearly A UB is a subspace.

To show that A U B is a subspace only if one subspace contains the other, we assume that A ¢ B
and B ¢ A and prove that the union is not a subspace. The assumption that A is not a subset of B
means that there is an d@ € A with @ ¢ B. The other assumption gives a b€ B with b ¢ A. Consider
@+ b. Note that sum is not an element of A or else (& + ‘5) — d would be in A, which it is not. Similarly
the sum is not an element of B. Hence the sum is not an element of A U B, and so the union is not a
subspace.

(c) Never. As A is a subspace, it contains the zero vector, and therefore the set that is A’s complement
does not. Without the zero vector, the complement cannot be a vector space.

Two.l.2.44 The span of a set does not depend on the enclosing space. A linear combination of vectors from S
gives the same sum whether we regard the operations as those of W or as those of V, because the operations
of W are inherited from V.

Two.1.2.45 Tt is; apply Lemma 2.9. (You must consider the following. Suppose B is a subspace of a vector
space V and suppose A C B C V is a subspace. From which space does A inherit its operations? The
answer is that it doesn’t matter— A will inherit the same operations in either case.)

Two.1.2.46  (a) Always; if S C T then a linear combination of elements of S is also a linear combination of
elements of T.
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(b) Sometimes (more precisely, if and only f SC Tor T C S).
The answer is not ‘always’ as is shown by this example from R3

1 0 1 0
S={|0]|,[1]} T={|o],|0]|}
0 0 0 1
because of this.
1 1
11 e€[SUT] 11 €I[SJUlT]

1 1

The answer is not ‘never’ because if either set contains the other then equality is clear. We can
characterize equality as happening only when either set contains the other by assuming S ¢ T (implying
the existence of a vector §€ S with §¢Z T) and T Z S (giving a t € T with t ¢ S), noting §+t € [SU T,
and showing that §+t ¢ [S]UIT].

(c) Sometimes.

Clearly [SNT] C [S] N [T] because any linear combination of vectors from S N T is a combination of
vectors from S and also a combination of vectors from T.

Containment the other way does not always hold. For instance, in R?, take

() )

so that [S] N [T] is the x-axis but [S N T] is the trivial subspace.
Characterizing exactly when equality holds is tough. Clearly equality holds if either set contains the
other, but that is not ‘only if’ by this example in R3.

1 0 1 0
S:{ 0 ) 1 }) T:{ 0 ) 0 }
0 0 0 1

(d) Never, as the span of the complement is a subspace, while the complement of the span is not (it does
not contain the zero vector).

Two.l.2.47 Call the subset S. By Lemma 2.9, we need to check that [S] is closed under linear combinations.
181+ +cnSnyCnt18Snt1 + -+ cmSm € [S] then for any p,r € R we have
p-(ci8i+---+cnSn) + 71 (1841 + -+ CmSm) =P8t + -+ PenSn + TCn18n1 + -+ + TCmSm
which is an element of [S]. (Remark. If the set S is empty, then that ‘if ... then ...’
true.)

statement is vacuously

Two.l.2.48 For this to happen, one of the conditions giving the sensibleness of the addition and scalar
multiplication operations must be violated. Consider R? with these operations.

)26 6)-0

The set R? is closed under these operations. But it is not a vector space.

()0
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Linear Independence

Two.ll.1: Definition and Examples

Two.ll.1.18 For each of these, when the subset is independent you must prove it, and when the subset is
dependent you must give an example of a dependence.
(a) It is dependent. Considering

1 2 4 0
c1| -3 +ca |2 +ce3| 4] =10
5 4 14 0
gives this linear system.
c1+2c2+ 4c3=0
—3c1+2¢c2— 4c3=0
5¢c1 +4cy + 14c3=0
Gauss’s Method
1 2 410 1 2 410
—3 2 —4|o] e BMeres £y g gl
5 4 14]0) 0t 00 0[0
yields a free variable, so there are infinitely many solutions. For an example of a particular dependence
we can set c3 to be, say, 1. Then we get c; = —1 and ¢ = —2.
(b) It is dependent. The linear system that arises here
1 2 3|0 1 2 310
77 70 :;%:Z RS NV G VR
7 7 7|0 ’ 0o 0 0]0

has infinitely many solutions. We can get a particular solution by taking c3 to be, say, 1, and back-
substituting to get the resulting c, and c;.
(c) It is linearly independent. The system

0o 1o ~1 4]0
0 0|0 PrEL2Pmlr f g 710
~1 410 0 0|0

has only the solution ¢y = 0 and c; = 0. (We could also have gotten the answer by inspection —the
second vector is obviously not a multiple of the first, and vice versa.)
(d) It is linearly dependent. The linear system

2 2 3 1210

2 0 5 1210

o1 -4 —-110
has more unknowns than equations, and so Gauss’s Method must end with at least one variable free
(there can’t be a contradictory equation because the system is homogeneous, and so has at least the
solution of all zeroes). To exhibit a combination, we can do the reduction

s 9 2 3 1210
cetpx /2estes fg 2 00
0o 0 -3 —-110
and take, say, c4 = 1. Then we have that c3 =—1/3, ¢c; = —1/3, and ¢y = —31/27.
Two.ll.1.19 In the cases of independence, you must prove that it is independent. Otherwise, you must exhibit
a dependence. (Here we give a specific dependence but others are possible.)
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(a) This set is independent. Setting up the relation c1(3 —x+9x%) +c2(5—6x+3x?) +c3(1 4+ 1x—5x?) =
0+ Ox + 0x? gives a linear system

3 5 110 3 5 110
—1 =6 1|0 Vueyrer 2oy TURINR o 3 40
9 3 —5|0) P 0 0 —128/13|0

with only one solution: ¢y =0, ¢; =0, and ¢c3 =0.

(b) This set is independent. We can see this by inspection, straight from the definition of linear
independence. Obviously neither is a multiple of the other.

(c) This set is linearly independent. The linear system reduces in this way

2 3 4o . ] 2 3 4]0
1o-1 oo AR TIERE o 5n 0 20
7 2 —3|o) Aetes 0 0 —51/5|0

to show that there is only the solution ¢y =0, ¢ =0, and ¢3 =0.
(d) This set is linearly dependent. The linear system
8§ 02 8|0
31 2 =210
322 5|0
must, after reduction, end with at least one variable free (there are more variables than equations, and
there is no possibility of a contradictory equation because the system is homogeneous). We can take the
free variables as parameters to describe the solution set. We can then set the parameter to a nonzero
value to get a nontrivial linear relation.
Two.ll.1.20 Let Z be the zero function Z(x) = 0, which is the additive identity in the vector space under
discussion.
(a) This set is linearly independent. Consider c¢q - f(x) + ¢2 - g(x) = Z(x). Pluggingin x =1 and x =2
gives a linear system
c- 1+ c-1=0
c1-2+4+c¢c2-(1/2)=0
with the unique solution ¢y =0, c; =0.
(b) This set is linearly independent. Consider ¢ - f(x) 4+ ¢z - g(x) = Z(x) and plug in x =0 and x = 71/2
to get
c1-1T+4+c¢c2-0=0
c1:-04c2-1=0
which obviously gives that ¢; =0, c; =0.
(c) This set is also linearly independent. Considering cq - f(x) + ¢z - g(x) = Z(x) and plugging in x =1
and x =e
cr-e+c-0=0
cr-e®+c2-1=0
gives that ¢c; =0 and ¢, =0.
Two.l1.1.21 In each case, if the set is independent then you must prove that and if it is dependent then you
must exhibit a dependence.
(a) This set is dependent. The familiar relation sin®(x) 4 cos?(x) = 1 shows that 2 = ¢; - (4sin?(x)) +
¢y - (cos?(x)) is satisfied by ¢; = 1/2 and ¢, = 2.
(b) This set is independent. Consider the relationship cq - 14 ¢ - sin(x) + ¢3 - sin(2x) = 0 (that ‘O’ is the
zero function). Taking three suitable points such as x = 7, x = 7/2, x = 7t/4 gives a system
C1 =0
c + c2 =0
c1 4 (V2/2)ca +¢c3=0
whose only solution is ¢y =0, ¢ =0, and ¢3 =0.
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(c) By inspection, this set is independent. Any dependence cos(x) = ¢ - x is not possible since the cosine
function is not a multiple of the identity function (we are applying Corollary 1.16).

(d) By inspection, we spot that there is a dependence. Because (1 + x)? = x? + 2x + 1, we get that
c1-(1+x)24+ca- (x* +2x) = 3 is satisfied by ¢; =3 and ¢, = —3.

(e) This set is dependent. The easiest way to see that is to recall the trigonometric relationship
cos?(x) — sin?(x) = cos(2x). (Remark. A person who doesn’t recall this, and tries some x’s, simply
never gets a system leading to a unique solution, and never gets to conclude that the set is independent.
Of course, this person might wonder if they simply never tried the right set of x’s, but a few tries will
lead most people to look instead for a dependence.)

(f) This set is dependent, because it contains the zero object in the vector space, the zero polynomial.

Two.l1.1.22 No, that equation is not a linear relationship. In fact this set is independent, as the system
arising from taking x to be 0, 7t/6 and 71/4 shows.

Two.ll.1.23 No. Here are two members of the plane where the second is a multiple of the first.

1 2
01,10
0 0

(Another reason that the answer is “no” is the the zero vector is a member of the plane and no set containing
the zero vector is linearly independent.)

Two.ll.1.24 'We have already showed this: the Linear Combination Lemma and its corollary state that in an
echelon form matrix, no nonzero row is a linear combination of the others.

Two.ll.1.25  (a) Assume that {ii,V, W} is linearly independent, so that any relationship doti+ d;V+dw = 0
leads to the conclusion that dg =0, dy =0, and d, =0.
Consider the relationship c; (it) 4 ¢ (i + V) + c3 (i +V+w) = 0. Rewrite it to get (¢ +cz + ¢3)d +
(c2 +¢3)V+ (c3)w = 0. Taking do to be ¢; + ¢2 + c3, taking d; to be ¢, + c3, and taking d, to be c3
we have this system.
c1+c2+c3=0
c2+c3=0
C3 = 0
Conclusion: the c¢’s are all zero, and so the set is linearly independent.
(b) The second set is dependent

1 (A=) +1- =W +1-W—1u) =0
whether or not the first set is independent.

Two.ll.1.26  (a) A singleton set {V} is linearly independent if and only if V # 0. For the ‘if’ direction, with
vV #£ 5, we can apply Lemma 1.3 by considering the relationship ¢-vV = 0 and noting that the only solution
is the trivial one: ¢ = 0. For the ‘only if’ direction, just recall that Example 1.9 shows that { 0}is linearly
dependent, and so if the set {¥} is linearly independent then ¥ # 0.

(Remark. Another answer is to say that this is the special case of Lemma 1.12 where S = &.)

(b) A set with two elements is linearly independent if and only if neither member is a multiple of the other
(note that if one is the zero vector then it is a multiple of the other). This is an equivalent statement: a
set is linearly dependent if and only if one element is a multiple of the other.

The proof is easy. A set {V/1,V; }is linearly dependent if and only if there is a relationship ¢V +coV2 =
0 with either c1 #0or ¢z #0 (or both). That holds if and only if v = (—c2/c1)V2 or V2 = (—c1/c2)V7
(or both).

Two.ll.1.27 This set is linearly dependent set because it contains the zero vector.
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Two.l1.1.28 Lemma 1.17 gives the ‘if’ half. The converse (the ‘only if’ statement) does not hold. An example
is to consider the vector space R? and these vectors.

000

Two.11.1.29  (a) The linear system arising from

1 —1 0
ci |1 +c2| 2 |=1]0
0 0 0

has the unique solution ¢c; =0 and c, =0.
(b) The linear system arising from

1 —1 3
ci|1)4+c2|l 2 |=1]2
0 0 0

has the unique solution ¢; =8/3 and ¢c; = —1/3.
(c) Suppose that S is linearly independent. Suppose that we have both vV = ¢187 + -+ + ¢Sy, and
V=dit; + - + dnti (Where the vectors are members of S). Now,
1S+ FenSn=V=dit] +--+dmtm
can be rewritten in this way.
181+ +enSn—dit; — - —dptim =0
Possibly some of the §’s equal some of the t’s; we can combine the associated coefficients (ie.,if s = fj
then - - +c¢iSi+ - — djfj — -+ can be rewritten as - -- + (cy — dj)si + - --). That equation is a linear
relationship among distinct (after the combining is done) members of the set S. We’ve assumed that
S is linearly independent, so all of the coefficients are zero. If i is such that §; does not equal any ’E}
then c; is zero. If j is such that ’E} does not equal any §; then d; is zero. In the final case, we have that
ci —d; =0 and so c; = d;.
Therefore, the original two sums are the same, except perhaps for some 0 -} or 0 - fj terms that we

can neglect.
(d) This set is not linearly independent:

- ) e

and these two linear combinations give the same result

0 1 2 1 2
o) =2(e) () () ()
Thus, a linearly dependent set might have indistinct sums.

In fact, this stronger statement holds: if a set is linearly dependent then it must have the property that
there are two distinct linear combinations that sum to the same vector. Briefly, where c187+---+cnSn = 0
then multiplying both sides of the relationship by two gives another relationship. If the first relationship
is nontrivial then the second is also.

Two.l1.1.30 In this ‘if and only if’ statement, the ‘if’ half is clear —if the polynomial is the zero polynomial
then the function that arises from the action of the polynomial must be the zero function x — 0. For ‘only
if’ we write p(x) = cnx™ + -+ - + ¢o. Plugging in zero p(0) = 0 gives that co = 0. Taking the derivative
and plugging in zero p’(0) = 0 gives that ¢; = 0. Similarly we get that each c; is zero, and p is the zero
polynomial.

Two.l.1.31 The work in this section suggests that we should define an n-dimensional non-degenerate linear
surface as the span of a linearly independent set of n vectors.



60 Linear Algebra, by Hefferon

Two.ll.1.32  (a) For any ay1, ..., a4,

) e ) e ) o 22)- )
az, az; az3 a4 0
yields a linear system
ai,1¢1 +ay2¢2 +ay 3¢3+ay 44 = 0
az;1c1 4+ azocy +az3c3 +azacs =0
that has infinitely many solutions (Gauss’s Method leaves at least two variables free). Hence there are
nontrivial linear relationships among the given members of R?.
(b) Any set five vectors is a superset of a set of four vectors, and so is linearly dependent.

With three vectors from R?, the argument from the prior item still applies, with the slight change
that Gauss’s Method now only leaves at least one variable free (but that still gives infinitely many
solutions).

(c) The prior item shows that no three-element subset of R? is independent. We know that there are
two-element subsets of R? that are independent — one is

00

1\ [0\ [o\ [1
{ofstrfs1of-11f
o/ \o/ \I 1

Two.l1.1.34 Yes. The two improper subsets, the entire set and the empty subset, serve as examples.

and so the answer is two.

Two.ll.1.33  Yes; here is one.

Two.ll.1.35 In R* the biggest linearly independent set has four vectors. There are many examples of such
sets, this is one.

1 0 0 0
( 0 1 0 0 )
of’fof’[1]’|o0
0 0 0 1
To see that no set with five or more vectors can be independent, set up
ai a2 a3 ara as 0
az1 azo a3 az4 azs 0
C1 B Tl +es B I Tl +cs T =

as,1 asz» as;s asz.4 as;s 0
as,1 as4,2 as,3 Q4.4 as,s 0

and note that the resulting linear system

ar,1¢1 +ar2¢2 +ar 3¢3+ag a4+ ay 565 = 0
az1¢1 +az2¢2 +az3c3 +azaCqs +azsCs = 0
az 1¢1 +asz2¢2 +asz 3c3 +as4Cq +az 5Cs = 0
Qaq,1C1 + aq,2C2 + a4,3C3 + Aq,4C4 + A4 5C5 = 0
has four equations and five unknowns, so Gauss’s Method must end with at least one ¢ variable free, so
there are infinitely many solutions, and so the above linear relationship among the four-tall vectors has
more solutions than just the trivial solution.
The smallest linearly independent set is the empty set.
The biggest linearly dependent set is R*. The smallest is {0}.
Two.l1.1.36  (a) The intersection of two linearly independent sets S N T must be linearly independent as it
is a subset of the linearly independent set S (as well as the linearly independent set T also, of course).
(b) The complement of a linearly independent set is linearly dependent as it contains the zero vector.
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(c) A simple example in R? is these two sets.

s=ifp) T

A somewhat subtler example, again in R?, is these two.

)R

d) We must produce an example. One, in R2, is
(d) P ) , :

) )

since the linear dependence of S; U S, is easy to see.

Il
—_
VR
— O
v
—

Two.ll.1.37  (a) Lemma 1.3 requires that the vectors §7,...,5n,t1,...,tm be distinct. But we could have
that the union SUT is linearly independent with some §; equal to some f]
(b) One example in R? is these two.

) ()

(c) An example from R? is these sets.

SO (04

(d) The union of two linearly independent sets S U T is linearly independent if and only if their spans of
S and T — (SN T) have a trivial intersection [S] N [T — (SN T)] ={0}. To prove that, assume that S and
T are linearly independent subsets of some vector space.

For the ‘only if’ direction, assume that the intersection of the spans is trivial [S] N [T — (SNT)] = {0}.
Consider the set SU (T — (SN T)) = SUT and consider the linear relationship ¢187 + -+ + cnSn +
ity + - +dmtm = 0. Subtracting gives ¢157 + -+ + cnSn = —dit; — - — ditm. The left side of
that equation sums to a vector in [S], and the right side is a vector in [T — (S N T)]. Therefore, since the
intersection of the spans is trivial, both sides equal the zero vector. Because S is linearly independent,
all of the c’s are zero. Because T is linearly independent so also is T — (SN T) linearly independent, and
therefore all of the d’s are zero. Thus, the original linear relationship among members of S U T only
holds if all of the coefficients are zero. Hence, S U T is linearly independent.

For the ‘if’ half we can make the same argument in reverse. Suppose that the union SUT is linearly
independent. Consider a linear relationship among members of Sand T— (SN T). ¢187 +--- 4+ cnSn +
ity + -+ dmtm = 0 Note that no S is equal to a ‘E} so that is a combination of distinct vectors, as
required by Lemma 1.3. So the only solution is the trivial one ¢c; =0, ..., d; = 0. Since any vector V in
the intersection of the spans [S] N [T — (SN T)] we can write V=c157 +- - +cnsn = —dit1 — - - —dmtm,
and it must be the zero vector because each scalar is zero.

Two.1l.1.38  (a) We do induction on the number of vectors in the finite set S.

The base case is that S has no elements. In this case S is linearly independent and there is nothing
to check—a subset of S that has the same span as S is S itself.

For the inductive step assume that the theorem is true for all sets of size n=0,n=1, ..., n=kin
order to prove that it holds when S has n = k + 1 elements. If the k + 1-element set S = {5,,...,5x}is
linearly independent then the theorem is trivial, so assume that it is dependent. By Corollary 1.16 there
is an S; that is a linear combination of other vectors in S. Define S; = S —{5;} and note that S; has
the same span as S by Lemma 1.12. The set S; has k elements and so the inductive hypothesis applies
to give that it has a linearly independent subset with the same span. That subset of S; is the desired
subset of S.
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(b) Here is a sketch of the argument. We have left out the induction argument details.

If the finite set S is empty then there is nothing to prove. If S = {6 } then the empty subset will do.

Otherwise, take some nonzero vector 57 € S and define S; ={87}. If [S;] = [S] then we are finished
with this proof by noting that S; is linearly independent.

If not, then there is a nonzero vector §; € S — [S1] (if every § € S is in [S;] then [S1] = [S]). Define
S, = S;U{s2}. If [S;] = [S] then we are finished by using Theorem 1.16 to show that S, is linearly
independent.

Repeat the last paragraph until a set with a big enough span appears. That must eventually happen
because S is finite, and [S] will be reached at worst when we have used every vector from S.

Two.11.1.39  (a) Assuming first that a # 0,

a b) (0
o) tYla) = o
ax+by=0 —(c/a)p1+p> ax+ by =0
cx+dy=0 (—(c/a)b+d)y=0
which has a solution if and only if 0 # —(c/a)b + d = (—cb + ad)/d (we’ve assumed in this case that
a # 0, and so back substitution yields a unique solution).
The a = 0 case is also not hard —break it into the ¢ # 0 and ¢ = 0 subcases and note that in these
cases ad —bc =0-d —bec.
Comment. An earlier exercise showed that a two-vector set is linearly dependent if and only if either

vector is a scalar multiple of the other. We could also use that to make the calculation.
(b) The equation

gives

a b c 0
ci|d]l+calel+e3|f] =10
g h i 0

gives rise to a homogeneous linear system. We proceed by writing it in matrix form and applying Gauss’s
Method.

We first reduce the matrix to upper-triangular. Assume that a # 0.

e, 1 b/a c/a|0 dorios 1 b/a c/a 0
— d e f |0 — 0 (ae—bd)/a (af—cd)/a |0
g h i1]0 TopTes 0 (ah—bg)/a (ai—cg)/a |0

1 b/a c/a 0

e/ae e 1 1 (af — cd)/(ae — bd) | 0

0 (ah—bg)/a (ai—cg)/a 0

(where we've assumed for the moment that ae —bd # 0 in order to do the row reduction step). Then,
under the assumptions, we get this.

1 ° £ 0
((ah—bg)/a)p2+p3 ¢ a
o 0 1 af—ed 0
aei+bgf+cgﬁ—hfa—idb—gec 0
0 0 ae—bd

shows that the original system is nonsingular if and only if the 3,3 entry is nonzero. This fraction is
defined because of the ae — bd # 0 assumption, and it will equal zero if and only if its numerator equals

ZET0.
We next worry about the assumptions. First, if a # 0 but ae — bd = 0 then we swap
1 b/a c/a 0 1 b/a c/a 0
0 0 (af —cd)/a | O P2eps 0 (ah—bg)/a (ai—cg)/a |0

0 (ah—bg)/a (ai—cg)/a |0 0 0 (af—cd)/a | 0
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and conclude that the system is nonsingular if and only if either ah —bg = 0 or af —cd = 0. That’s the
same as asking that their product be zero:

ahaf — ahcd — bgaf +bged =0
ahaf — ahcd — bgaf + aegc =0
a(haf —hcd —bgf+egc) =0

(in going from the first line to the second we've applied the case assumption that ae — bd = 0 by
substituting ae for bd). Since we are assuming that a # 0, we have that haf — hcd — bgf + egc = 0.
With ae — bd = 0 we can rewrite this to fit the form we need: in this a # 0 and ae —bd = 0 case, the
given system is nonsingular when haf —hcd — bgf + egc — i(ae —bd) = 0, as required.

The remaining cases have the same character. Do the a =0 but d # 0 case and the a =0 and d =0
but g # 0 case by first swapping rows and then going on as above. The a =0, d =0, and g =0 case is
easy —a set with a zero vector is linearly dependent, and the formula comes out to equal zero.

(c) It is linearly dependent if and only if either vector is a multiple of the other. That is, it is not
independent iff

a b b a
d|l=7r-]e or el =s-
g h h g

(or both) for some scalars r and s. Eliminating r and s in order to restate this condition only in
terms of the given letters a, b, d, e, g, h, we have that it is not independent —it is dependent —iff
ae —bd = ah — gb =dh — ge.
(d) Dependence or independence is a function of the indices, so there is indeed a formula (although at
first glance a person might think the formula involves cases: “if the first component of the first vector is
zero then ...”, this guess turns out not to be correct).

Two.l1.1.40 Recall that two vectors from R™ are perpendicular if and only if their dot product is zero.

(a) Assume that v and w are perpendicular nonzero vectors in R™, with n > 1. With the linear relationship
¢V + dw = 0, apply ¥ to both sides to conclude that c - ||\7’||2 +d-0=0. Because v # 0 we have that
¢ = 0. A similar application of w shows that d = 0.

(b) Two vectors in R' are perpendicular if and only if at least one of them is zero.

We define R° to be a trivial space, and so both ¥ and W are the zero vector.

(c) The right generalization is to look at a set {V1,...,V, } C R¥ of vectors that are mutually orthogonal
(also called pairwise perpendicular): if i # j then V; is perpendicular to V;. Mimicking the proof of the
first item above shows that such a set of nonzero vectors is linearly independent.

Two.ll.1.41  (a) This check is routine.
(b) The summation is infinite (has infinitely many summands). The definition of linear combination
involves only finite sums.
(c) No nontrivial finite sum of members of {g, fo,f1,...} adds to the zero object: assume that

co-(1/(T—=x))+c1-T4+--+cn-x"=0

(any finite sum uses a highest power, here n). Multiply both sides by 1 — x to conclude that each
coefficient is zero, because a polynomial describes the zero function only when it is the zero polynomial.

Two.ll.1.42 1t is both ‘if’ and ‘only if’.
Let T be a subset of the subspace S of the vector space V. The assertion that any linear relationship
et + - +entn = 0 among members of T must be the trivial relationship ¢y =0, ..., ch, =01is a
statement that holds in S if and only if it holds in V, because the subspace S inherits its addition and
scalar multiplication operations from V.
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Basis and Dimension

Two.lll.1l: Basis

Two.l11.1.16 By Theorem 1.12, each is a basis if and only if we can express each vector in the space in a
unique way as a linear combination of the given vectors.
(a) Yes this is a basis. The relation

1 3

0 X
ci1 |2l +c2|2]+c3|0] = y
3 1 1 z
gives
1 3 0]x 1 3 0]x
2 02 0fy| PP 1y 4 0| —2x 4y
31 1 —3p1+p3

z 0 0 1T|x—2y+z
which has the unique solution ¢c3 =x — 2y +z, ¢c; =x/2 —y/4, and ¢ = —x/2 + 3y/4.
(b) This is not a basis. Setting it up as in the prior item

1 3 X
ci|2]4+c2|2|=1]y
3 1 z
gives a linear system whose solution
1 3]x 1T 3 |x
2 2|y | AR EeEes Ly 4 oxay
—3p1+p3

3 1|z 0 0 |x—2y+z
is possible if and only if the three-tall vector’s components x, y, and z satisfy x — 2y +z = 0. For
instance, we can find the coefficients ¢; and ¢, that work when x =1,y =1, and z = 1. However, there
are no c¢’s that work for x =1, y =1, and z = 2. Thus this is not a basis; it does not span the space.
(c) Yes, this is a basis. Setting up the relationship leads to this reduction

0 1 2|x ) o 11 0 |z
21 5|y | P rete (2Rt | 3 5y
11 0|z 0 0 1/3|x—y/3—2z/3

which has a unique solution for each triple of components x, y, and z.
(d) No, this is not a basis. The reduction

0 1 1|x 5 s -1 1 0|z
21 3|y | g reremlBleetes | g 3o,
-1 1 0|z 0 0 0|x—y/3—2z/3

which does not have a solution for each triple x, y, and z. Instead, the span of the given set includes
only those three-tall vectors where x =vy/3 + 2z/3.

Two.ll.1.17  (a) We solve
()=
1 1 2
(1 -1 1) ~prp (1 —1 1)
1 12 0 211
and conclude that ¢ = 1/2 and so ¢y = 3/2. Thus, the representation is this.

1\, (32
(o) - (72),

with
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(b) The relationship c1 - (1) 4+c2-(14+%x)+c3-(1+x+x2)+cq-(1+x+x> +x3) =x% +x3 is easily
solved by eye to give that c4 =1,¢c3=0,c; =—1,and ¢y =0.

0
2 3 =1
Repp (x* +x7) = 0
1 D
0 0
—1 —1
1 1

&y
Two.lll.1.18 A natural basis is (1,x,x?). There are bases for P, that do not contain any polynomials of
degree one or degree zero. One is (1 +x + x%,x + x?,x?). (Every basis has at least one polynomial of

degree two, though.)
0 ~2p14p2 1 —4 3 —-11]0
0 0 0 0 0|0

Two.lll.1.19 The reduction
1 —4 3 -1
2 -8 6 -2
gives that the only condition is that x; = 4x, — 3x3 + x4. The solution set i

Axy — 3x3 + x4 4 -3 1
X2 1 0 0
{ X2,X3,X4 € R} ={x2 +x3 + x4 | x2,x3,x4 € R}
X3 0 1 0
X4 0 0 1

and so the obvious candidate for the basis is this.

4 -3 1
1 0 0

< O ) 1 ) O >
0 0 1

We've shown that this spans the space, and showing it is also linearly independent is routine.
Two.l11.1.20 There are many bases. This is a natural one.

( 1 0 0 1 0 0 00 >
0 0o/’\0 o)’\1 0)’\0 1
Two.lll.1.21 For each item, many answers are possible.

(a) One way to proceed is to parametrize by expressing the a, as a combination of the other two
a; =2a; + ap. Then ayx? + ajx + ap is (2a; + ao)x? + ayx + ap and

{(2a1 + ap)x* + a1x +ao | a1,a0 € R} ={a; - (2x* +x) + ao - (x* +1) | a1, a0 € R}

suggests (2x% +x,x? + 1). This only shows that it spans, but checking that it is linearly independent is
routine.

(b) Parametrize {(a b ¢) | a+b=0}toget {(—b b ¢) | b,c € R}, which suggests using the se-
quence ((—1 1 0),(0 0 1)). We've shown that it spans, and checking that it is linearly independent

is easy.
a b 10 0 1
{(0 2b>|a,beR}_{a-<0 0>+b-<0 2>|a,beR}

(c) Rewriting
suggests this for the basis.
10 0 1
(o o))
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Two.l11.1.22 We will show that the second is a basis; the first is similar. We will show this straight from the
definition of a basis, because this example appears before Theorem 1.12.
To see that it is linearly independent, we set up c¢1-(cos0—sin0)+c,-(2cos0+3sin0) = 0cos 0+0sin 6.
Taking © = 0 and 6 = 7t/2 gives this system

ci1-14c2-2=0 p1tp2 c1+2c2=0
c1-(—1)+c2-3=0 +5¢c; =0
which shows that ¢c; =0 and c, = 0.
The calculation for span is also easy; for any x,y € R, we have that ¢; - (cos® —sin6) + ¢, - (2cos0 +
3sinB) = xcos0 + ysin O gives that ¢ = x/5 +y/5 and that ¢; = 3x/5 — 2y/5, and so the span is the

entire space.
Two.l11.1.23  (a) Asking which ap + ajx + a>x? can be expressed as cq - (1 +x) + ¢z - (14 2x) gives rise to
three linear equations, describing the coefficients of x2, x, and the constants.

c1+ c2=ap

c1+2c=aq

0= az
Gauss’s Method with back-substitution shows, provided that a, =0, that c;c = —ap+ay and ¢; = 2ap—
ai. Thus, with a, = 0, we can compute appropriate ¢; and ¢, for any ap and a;. So the span is the entire
set of linear polynomials {ap + ajx ‘ ap, a1 € R}. Parametrizing that set {ap -1+ a7 - x ] ap, a7 € R}

suggests a basis (1,x) (we've shown that it spans; checking linear independence is easy).
(b) With
o+ arx+axx? =cy - (2—=2x)+c2- (3+4x%) = (2c1 +3c2) + (—2¢1 )x + (4ea2)x?

we get this system.

2¢cq1 4+ 3¢ = qap /3 2¢cq1 +3c2=aqap
—2¢; = D1_+D>2 = /ﬂf"‘% 3co =ap + aq
dcr; = ay 0=(-4/3)ap — (4/3)a; + ay

Thus, the only quadratic polynomials ap + a;x + a>x? with associated c’s are the ones such that 0 =
(—4/3)ap—(4/3)a;+a,. Hence the spanis {(—a; + (3/4)az) + a1x + arx? | aj, a; € R}. Parametrizing
gives {ay - (—1+x) +az - ((3/4) +x?) | ar,a € R}, which suggests (—1+x, (3/4) +x?) (checking that
it is linearly independent is routine).

Two.lll.1.24  (a) The subspaceis{ao + aix + a;x? + azx® | ap + 7a; +49a; + 343az = 0}. Rewriting ap =
—7a; —49a, — 343a;3 gives {(—7a; —49a> — 343a3) + arx + axx? + azx3 | aj, daz,as € R}, which, on
breaking out the parameters, suggests (—7 + x, —49 + x2, —343 + x3) for the basis (it is easily verified).

(b) The given subspace is the collection of cubics p(x) = ap + arx + a;x? + a3x® such that ap +7a; +
49a5 + 343a3 = 0 and ag + 5a7 + 25a, + 125a3 = 0. Gauss’s Method
ao+7a1 +4%9a; +343a3 =0 —p1+p> o+ 7a3+4%9ar +343a3 =0
ao +5a; +25a; +125a3 =0 —2a7 —24a; —218a3 =0
gives that a; = —12a; — 109a3 and that ap = 35a; + 420a3. Rewriting (35a; +420a3) + (—12a; —
109a3)x + a)x? + a3x> as ap - (35 — 12x + x2) + a3 - (420 — 109x + x3) suggests this for a basis
(35 — 12x + x2,420 — 109x + x3). The above shows that it spans the space. Checking it is linearly
independent is routine. (Comment. A worthwhile check is to verify that both polynomials in the basis
have both seven and five as roots.)
(c) Here there are three conditions on the cubics, that ap + 7a; +4%9a; 4+ 343a; = 0, that ap + 5a; +
25a; + 125a3 = 0, and that ag + 3a; + 9a; + 27a3 = 0. Gauss’s Method

ao +7a1 +49a; +343a3 =0 ) ao+ 7a; +49a, +343a3 =0
ao +5a1 +25az + 12503 =0 P R —2ay — 24a; —218a3 =0
ao+3a; + 9az+ 27a3=0 8a, + 120a; =0
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yields the single free variable a3, with a, = —15a3, a; = 71as, and ap = —105a3. The parametrization
is this.

{(=105a3) + (71az)x + (—15a3)x* + (a3)x? | a3 € R} ={az - (=105 + 71x — 15x* + x3) | a3 € R}

Therefore, a natural candidate for the basis is (—105 + 71x — 15x% +x3). It spans the space by the work
above. It is clearly linearly independent because it is a one-element set (with that single element not the
zero object of the space). Thus, any cubic through the three points (7,0), (5,0), and (3,0) is a multiple
of this one. (Comment. As in the prior question, a worthwhile check is to verify that plugging seven,
five, and three into this polynomial yields zero each time.)
(d) This is the trivial subspace of P3. Thus, the basis is empty ().
Remark. Alternatively, we could have derived the polynomial in the third item by multiplying out
(x—=7)(x—5)(x—3).

Two.lll.1.25 Yes. Linear independence and span are unchanged by reordering.

Two.ll1.1.26 No linearly independent set contains a zero vector.

Two.l11.1.27  (a) To show that it is linearly independent, note that d;(c; 61) +d>(cz [32) + d3(c3 [§3) =0
gives that (dqcq )ﬁ1 + (dzcz)ﬁz + (d3C3)[§3 =0, which in turn implies that each dic; is zero. But with
ci # 0 that means that each d; is zero. Showing that it spans the space is much the same; because
<61,Ez, ﬁg) is a basis, and so spans the space, we can for any v write v = d;f1 + d2f2 + d3f3, and
then v = (di/c1)(c1f1) + (d2/c2)(c2B2) + (d3/c3)(c3B3).

If any of the scalars are zero then the result is not a basis, because it is not linearly independent.
(b) Showing that (281,81 + B2, 1 + B3) is linearly independent is easy. To show that it spans the
space, assume that v = d; [§1 + dzﬁz +ds ['3'3. Then, we can represent the same Vv with respect to
(2B1,B1 + B2, B1 + B3) in this way ¥ = (1/2)(dy — d2 — d3)(2B1) + d2(B1 + B2) + d3(B1 + B3).

Two.l11.1.28 Each forms a linearly independent set if we omit V. To preserve linear independence, we must
expand the span of each. That is, we must determine the span of each (leaving V out), and then pick a
V lying outside of that span. Then to finish, we must check that the result spans the entire given space.
Those checks are routine.

(a) Any vector that is not a multiple of the given one, that is, any vector that is not on the line y = x
will do here. One is V = €.

(b) By inspection, we notice that the vector €3 is not in the span of the set of the two given vectors. The
check that the resulting set is a basis for R3 is routine.

(c) For any member of the span {c; - (x) + ¢z - (1+x?) ] c1,c2 € R}, the coefficient of x? equals the
constant term. So we expand the span if we add a quadratic without this property, say, v = 1 — x?. The
check that the result is a basis for P, is easy.

Two.l11.1.29 To show that each scalar is zero, simply subtract c; 51 +-- ~+ck[§k—ck+1 ng - '—cngn =0.
The obvious generalization is that in any equation involving only the B"s, and in which each ﬁ appears only
once, each scalar is zero. For instance, an equation with a combination of the even-indexed basis vectors
(i.e., ﬁz, 54, etc.) on the right and the odd-indexed basis vectors on the left also gives the conclusion that
all of the coefficients are zero.

Two.ll11.1.30 No; no linearly independent set contains the zero vector.

Two.lll.1.31 Here is a subset of R? that is not a basis, and two different linear combinations of its elements
that sum to the same vector.

06 Q=06

Thus, when a subset is not a basis, it can be the case that its linear combinations are not unique.
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But just because a subset is not a basis does not imply that its combinations must be not unique. For

{@}
()<

implies that ¢; = c2. The idea here is that this subset fails to be a basis because it fails to span the space;
the proof of the theorem establishes that linear combinations are unique if and only if the subset is linearly

instance, this set

does have the property that

independent.

Two.ll1.1.32  (a) Describing the vector space as

{<§ E) ‘ a,b,c € R}

oG

suggests this for a basis.

Verification is easy.
(b) This is one possible basis.

100 0 0O 0 00 010 0 0 1 0 00
(o 0 of,f0 1 0],{0 O O,]T O Of,|]O0 O Of,[0 O 1)
0 00 0 0 0 0 0 1 0 00 1.0 0 010

(c) As in the prior two questions, we can form a basis from two kinds of matrices. First are the matrices
with a single one on the diagonal and all other entries zero (there are n of those matrices). Second are
the matrices with two opposed off-diagonal entries are ones and all other entries are zeros. (That is, all
entries in M are zero except that m;; and m; ; are one.)

Two.l11.1.33  (a) Any four vectors from R> are linearly related because the vector equation

X1 X2 X3 X4 0
cilyr|+e2|yza| +e3|ys|+cafya| =10
Z1 Z2 Z3 Za 0

gives rise to a linear system

X1€1 + X202 + X3¢3 + x4¢4 =0

yicr +Yac2 Y33 +yacs =0

z1C1 + z2¢2 + z3¢3 + 24¢4 =0
that is homogeneous (and so has a solution) and has four unknowns but only three equations, and
therefore has nontrivial solutions. (Of course, this argument applies to any subset of R* with four or
more vectors.)

(b) We shall do just the two-vector case. Given xq, ..., z2,
X1 X2

S={|yr1|,|v2 ]!}
Z1 V)

to decide which vectors
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are in the span of S, set up

X1 X2 X
Ctlyr | +c2ly2 | =1y
Z1 z z

and row reduce the resulting system.

X1C1 + X202 =X

Yic1 +y2c2 =y

z1C1 + z22€c2 =2
There are two variables ¢; and ¢, but three equations, so when Gauss’s Method finishes, on the bottom
row there will be some relationship of the form 0 = myx 4+ myy + m3z. Hence, vectors in the span of
the two-element set S must satisfy some restriction. Hence the span is not all of R3.

Two.ll1.1.34 We have (using these peculiar operations with care)

1—y—z —y+1 —z+1 0 0
{ y ‘y,zeR}:{ y + 0 ]y,zER}:{y- 114+z-|0 ‘y,zeR}
z 0 z 0 1
and so a natural candidate for a basis is this.
0 0
(rL-(op
0 1
To check linear independence we set up
0 0 1
|1l 4+c2|0]l=]0
0 1 0

(the vector on the right is the zero object in this space). That yields the linear system

(—c1+ 1)+ (—c2+1)—1=1
Cq =0
C2 =0

with only the solution ¢; =0 and c,; = 0. Checking the span is similar.

Two.lll.2: Dimension

Two.ll1.2.15 One basis is (1,x,x?), and so the dimension is three.

Two.l11.2.16 The solution set is
4xy — 3x3 + X4

X
{ 5 X2,X3,X4 € R}
X3
X4
so a natural basis is this
4 -3 1
1 0 0
< O ) -I ) O >
0 0 1

(checking linear independence is easy). Thus the dimension is three.



70 Linear Algebra, by Hefferon

Two.l11.2.17 For this space

a b 10 0 0
{(C d)‘a,b,c,deR}{w(O O>+~~+d~<0 ]>]a,b,c,d€R}

this is a natural basis.
( 1 0 0 1 0 0 0 0 >
0 o/’\0o o/J’\1 o/)’\0 1

Two.l11.2.18  (a) As in the prior exercise, the space My, of matrices without restriction has this basis
( 10 0 1 00 0 0 )

0 o/’\0o o/)’\1 0)’\0 1
and so the dimension is four.
(b) For this space

a b 11 -2 0 0 0
{(C d) |la=b—2cand deR}={b- <o 0) +c- ( 1 o) +d- (o 1) | b,c,d € R}
this is a natural basis.
( 1 1 -2 0 0 0 >
0 0/’ 1 0)°\0 1

The dimension is three.

(c) Gauss’s Method applied to the two-equation linear system gives that ¢ = 0 and that a = —b. Thus,
we have this description

-b b -1 1 0 0
{(O d>|b,deR}_{b~< 0 O)+d~<0 1>|b,deR}
and so this is a natural basis.
( -1 1 0 0 >
0 0/)’\0 1

Two.l11.2.19 The bases for these spaces are developed in the answer set of the prior subsection.
(a) One basis is (—7 + x, —49 + x?, —343 + x3). The dimension is three.
(b) Onme basis is (35 — 12x + x?,420 — 109x + x3) so the dimension is two.
(c) A basis is {—105 + 71x — 15x? + x>}. The dimension is one.
(d) This is the trivial subspace of P3 and so the basis is empty. The dimension is zero.

Two.l11.2.20 First recall that cos 20 = cos? 6 — sin? 0, and so deletion of cos 20 from this set leaves the span
unchanged. What’s left, the set {cos? 0, sin’ 0,sin 20}, is linearly independent (consider the relationship
cqcos? 0 + cysin? 0 + c3sin20 = Z(0) where Z is the zero function, and then take 8 = 0, 6 = /4, and
0 = 7t/2 to conclude that each c is zero). It is therefore a basis for its span. That shows that the span is a

dimension three vector space.
Two.ll1.2.21 Here is a basis
((1+0i,0+0i,...,0+0i), (0+ 14,0+ 01i,...,0+01),(0+0i,1 +0i,...,0+ 0i),...)
and so the dimension is 2 - 47 = 94.
Two.l11.2.22 A basis is

The dimension is four.

The dimension is two.

10 0 0 O 01 0 00 00 0 00
(o 0o 0o 0 of,[0 00 0 O0],...,.10 0 0 0 0})
00 0 0 0 0 0 0 00 0 0 0 01
and thus the dimension is 3-5 = 15.
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Two.l11.2.23 In a four-dimensional space a set of four vectors is linearly independent if and only if it spans
the space. The form of these vectors makes linear independence easy to show (look at the equation of
fourth components, then at the equation of third components, etc.).

Two.l11.2.24  (a) The diagram for P, has four levels. The top level has the only three-dimensional subspace,
P, itself. The next level contains the two-dimensional subspaces (not just the linear polynomials; any
two-dimensional subspace, like those polynomials of the form ax2+b). Below that are the one-dimensional
subspaces. Finally, of course, is the only zero-dimensional subspace, the trivial subspace.

(b) For M2, the diagram has five levels, including subspaces of dimension four through zero.

Two.ll1.2.25 (a) One (b) Two (c) n
Two.l11.2.26  'We need only produce an infinite linearly independent set. One is (f,f2,...) where fi: R - R

is
1 ifx=1
fi(x) =

0 otherwise
the function that has value 1 only at x = 1.

Two.ll11.2.27 A function is a set of ordered pairs (x, f(x)). So there is only one function with an empty domain,
namely the empty set. A vector space with only one element a trivial vector space and has dimension zero.

Two.l11.2.28 Apply Corollary 2.10.

Two.l11.2.29 A plane has the form {§ + t1V; + t2 V> | t1,t2 € R} (The first chapter also calls this a ‘2-flat’,
and contains a discussion of why this is equivalent to the description often taken in Calculus as the set
of points (x,y,z) subject to a condition of the form ax + by + cz = d). When the plane passes through
the origin we can take the particular vector p to be 0. Thus, in the language we have developed in this
chapter, a plane through the origin is the span of a set of two vectors.

Now for the statement. Asserting that the three are not coplanar is the same as asserting that no vector
lies in the span of the other two—mno vector is a linear combination of the other two. That’s simply an
assertion that the three-element set is linearly independent. By Corollary 2.14, that’s equivalent to an
assertion that the set is a basis for R® (more precisely, any sequence made from the set’s elements is a
basis).

Two.ll1.2.30 Let the space V be finite dimensional. Let S be a subspace of V.

(a) The empty set is a linearly independent subset of S. By Corollary 2.12, it can be expanded to a basis
for the vector space S.

(b) Any basis for the subspace S is a linearly independent set in the superspace V. Hence it can be
expanded to a basis for the superspace, which is finite dimensional. Therefore it has only finitely many
members.

Two.l11.2.31 It ensures that we exhaust the §’s. That is, it justifies the first sentence of the last paragraph.

Two.l11.2.32 Let By be a basis for U and let By, be a basis for W. The set By U By is linearly dependent
as it is a six member subset of the five-dimensional space R®>. Thus some member of Byy is in the span of
By, and thus U NW is more than just the trivial space {0}

Generalization: if U, W are subspaces of a vector space of dimension n and if dim(U) + dim(W) > n
then they have a nontrivial intersection.

Two.l11.2.33 First, note that a set is a basis for some space if and only if it is linearly independent, because
in that case it is a basis for its own span.

(a) The answer to the question in the second paragraph is “yes” (implying “yes” answers for both questions
in the first paragraph). If By is a basis for U then By, is a linearly independent subset of W. Apply
Corollary 2.12 to expand it to a basis for W. That is the desired By .

The answer to the question in the third paragraph is “no”, which implies a “no” answer to the question
of the fourth paragraph. Here is an example of a basis for a superspace with no sub-basis forming a
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basis for a subspace: in W = R?, consider the standard basis &,. No sub-basis of €, forms a basis for
the subspace U of R? that is the line y = x.
(b) It is a basis (for its span) because the intersection of linearly independent sets is linearly independent
(the intersection is a subset of each of the linearly independent sets).

It is not, however, a basis for the intersection of the spaces. For instance, these are bases for R?:

ST

and R? NR? = R?, but B; N B, is empty. All we can say is that the N of the bases is a basis for a subset
of the intersection of the spaces.
(c) The U of bases need not be a basis: in R?

D) = e )

B UB; is not linearly independent. A necessary and sufficient condition for a U of two bases to be a
basis

B; U B is linearly independent < [B1NBy] =[Bi]NI[B;]
it is easy enough to prove (but perhaps hard to apply).

(d) The complement of a basis cannot be a basis because it contains the zero vector.

Two.l11.2.34  (a) A basis for U is a linearly independent set in W and so can be expanded via Corollary 2.12
to a basis for W. The second basis has at least as many members as the first.

(b) One direction is clear: if V = W then they have the same dimension. For the converse, let By be
a basis for U. It is a linearly independent subset of W and so can be expanded to a basis for W. If
dim(U) = dim(W) then this basis for W has no more members than does By and so equals By. Since
U and W have the same bases, they are equal.

(c) Let W be the space of finite-degree polynomials and let U be the subspace of polynomials that have
only even-powered terms {ap + arx? + ax* 4+ -+ apx®™ | ag,...,an € R}. Both spaces have infinite
dimension, but U is a proper subspace.

Two.ll1.2.35 The possibilities for the dimension of V are 0, 1, n — 1, and n.
To see this, first consider the case when all the coordinates of V are equal.
z
z

<!
I

z
Then o(V) = V for every permutation o, so V is just the span of ¥, which has dimension O or 1 according
to whether ¥ is 0 or not.

Now suppose not all the coordinates of V are equal; let x and y with x # y be among the coordinates of
V. Then we can find permutations o7 and o, such that

x Y
y X
o1(V)=1] a3 and o,(V)=| a3
an an
for some as,...,a, € R. Therefore,
—1
1
1 - -
(1) -0 =| ©
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isin V. That is, €, — €1 € V, where €4, €5, ..., €, is the standard basis for R™. Similarly, €3 — €5, ...
€, —¢€7 are all in V. It is easy to see that the vectors €, — €7, €3 — €5, ..., €, — €7 are linearly independent
(that is, form a linearly independent set), so dimV >n —1.

)

Finally, we can write
V=%x1€7 + %282+ -+ Xnén
=(x1+x2+ - +xn)€ +x2(62 —€1)+ - +xn(€, — &)

This shows that if x; +x2 + - -+ xn = 0 then V is in the span of € — €7, ..., €4 — €; (that is, is in the
span of the set of those vectors); similarly, each o(V) will be in this span, so V will equal this span and
dimV =n —1. On the other hand, if x; +x2 + - - - +x;; # O then the above equation shows that &; € V
and thus €7,...,€, € V,s0 V=R™ and dimV =n.

Two.lll.3: Vector Spaces and Linear Systems

1 6
Two.lll.3.16  (a) G ?) (b) (? ;) (c) [4 7 (d (0 0 0) (o) <_;>
38

Two.l11.3.17 (@) Yes. To see if there are ¢; and ¢y such that ¢1-(2 1)4+c2-(3 1)=(1 0) we solve

2c1 4+ 3cr =1
c1+ c2=0
and get ¢; = —1 and ¢, = 1. Thus the vector is in the row space.
(b) No. The equation c1(0 1 3)+ca2(—=1 0 1)+c3(—1 2 7)=(1 1 1) has no solution.
0 —1 —=1]1 1 0o 2 1
10 21| P Emgee et [y g ] g
3 1 711 0 0 0]-1

Thus, the vector is not in the row space.

Two.ll1.3.18  (a) No. To see if there are c1,c; € R such that

):<()-0

we can use Gauss’s Method on the resulting linear system.

c1+c2=1-pi+p, 1 +c2=1

c1+c2=3 0=2
There is no solution and so the vector is not in the column space.
(b) Yes. From this relationship

1 3 1 1
c1 2] +c2 Ol +c3|4| =10
1 -3 3 0

we get a linear system that, when we apply Gauss’s Method,

[ AR AT 13 1] 1
20 40| TREPRTR2Ees 1y g 2| 2
—pP1+pP3

1 =3 =310 0 0 —6| 1

yields a solution. Thus, the vector is in the column space.
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Two.l11.3.19  (a) Yes; we are asking if there are scalars ¢; and c; such that

()< ()-(3)

which gives rise to a linear system

2c1+ co= 1 7%‘“ 2c1+ co= 1
2¢1 +5¢c,=-3 4cy =—4
and Gauss’s Method produces ¢; = —1 and ¢; = 1. That is, there is indeed such a pair of scalars and so

the vector is indeed in the column space of the matrix.
(b) No; we are asking if there are scalars ¢; and ¢, such that

(3] () -(0)
2 —4 1

and one way to proceed is to consider the resulting linear system

4C1 - 8C2 =0

2C1 — 4C2 =1
that is easily seen to have no solution. Another way to proceed is to note that any linear combination of
the columns on the left has a second component half as big as its first component, but the vector on the
right does not meet that criterion.

(c) Yes; we can simply observe that the vector is the first column minus the second. Or, failing that,
setting up the relationship among the columns

1 —1 1 2
cq 1| +c2 1|+c3|—-1]=1]0
—1 —1 1 0
and considering the resulting linear system
c1—Ccy+c3=2 Cc1 — co+ ¢c3= 2 c1— C2+ ¢c3= 2
ci+c2—c3=0 *ﬁi)pz 2c) —2¢c3=-2 pz_+9>3 2cp; —2¢c3=-2
—c1—c2+c3=0 pres —2¢c2+2¢c3= 2 0= 0
gives the additional information (beyond that there is at least one solution) that there are infinitely many
solutions. Parametrizing gives c; = —1+ c¢3 and ¢y = 1, and so taking c3 to be zero gives a particular
solution of ¢; =1, ¢c; = —1, and c3 = 0 (which is, of course, the observation made at the start).
Two.l11.3.20 A routine Gaussian reduction
20 3 4 20 3 4
0 1 1 =11 —3/2)p1+p3 —p2+p3 —p3+pa |0 1 1 -1
31 0 2| -t2mees  |ooo 112 -3
1T 0 —4 1 00 0 0

suggests this basis (2 0 3 4),(0 1 1 —1),(0 0 —11/2 =3)).
Another, perhaps more convenient procedure, is to swap rows first,

10 —4 -1
mic;zt fSLps ﬂﬁ)ps fp3_+>p4 01 1T -1
—2p1+pa 0 0 11 6
0 0 0 0
leading to the basis ((1 0 —4 —1),(0 1 1 —1),(0 0 11 6)).
Two.l11.3.21  (a) This reduction
2 1 3
’2;2—‘3‘“’2 “(3eetes 1y 30 12
CH/eles 0 0 4/3

shows that the row rank, and hence the rank, is three.
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(b) Inspection of the columns shows that the others are multiples of the first (inspection of the rows
shows the same thing). Thus the rank is one.
Alternatively, the reduction

1 -1 2 1 -1 2
3 -3 6 ’j"‘“’z 0 0
2 2 —4) P \o 0 0

shows the same thing.
(c) This calculation

shows that the rank is two.
(d) The rank is zero.
Two.l11.3.22  (a) This reduction

1 3 1 3
-1 3 p1_+p>z 7(1/6)_p>2+p3 0 6
1 4 :§1+f3 (5/6)p2+p4 |0 O
2 P1+pa 0 0
gives ((1 3),(0 6)).
(b) Transposing and reducing
1 2 1 1 2 1 1 2 1
3001 1| 2Pl 5 | 25 o 5 4
—p1+p3
1 -3 -3 0 -5 —4 o o0 0
and then transposing back gives this basis.
1 0
< 2 ) =5 >
1 —4

(c) Notice first that the surrounding space is as Pz, not P,. Then, taking the first polynomial 14+ 1-x +
0-x% +0-%x3 to be “the same” as the row vector (1 1 0 0), etc., leads to

11 00 1 1 0 0
10 —1 0 ‘3‘%"2 TREP g 1 1 0
3 2 -1 o) e 0 0 00

which yields the basis (1 + x, —x — x?).
(d) Here “the same” gives

1o 1 3 1 - , 101 31 -1
1o 3 2 1 4] PSP l0 002 1005
10 -5 -1 -1 -9 "% 000 00 0

leading to this basis.

1 0 1 0 0 2
<<3 1 —1)’(—1 0 5>>

Two.l11.3.23 Only the zero matrices have rank of zero. The only matrices of rank one have the form
ki-p

km P
where p is some nonzero row vector, and not all of the k;’s are zero. (Remark. We can’t simply say that
all of the rows are multiples of the first because the first row might be the zero row. Another Remark.
The above also applies with ‘column’ replacing ‘row’.)
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Two.lll.3.24 If a # 0 then a choice of d = (¢/a)b will make the second row be a multiple of the first,
specifically, ¢/a times the first. If a = 0 and b = 0 then any non-0 choice for d will ensure that the
second row is nonzero. If a =0 and b # 0 and ¢ = 0 then any choice for d will do, since the matrix will
automatically have rank one (even with the choice of d = 0). Finally, if a =0 and b # 0 and ¢ # 0 then
no choice for d will suffice because the matrix is sure to have rank two.

Two.ll1.3.25 The column rank is two. One way to see this is by inspection —the column space consists of
two-tall columns and so can have a dimension of at least two, and we can easily find two columns that
together form a linearly independent set (the fourth and fifth columns, for instance). Another way to see
this is to recall that the column rank equals the row rank, and to perform Gauss’s Method, which leaves
two nonzero rows.

Two.l11.3.26 We apply Theorem 3.13. The number of columns of a matrix of coefficients A of a linear system
equals the number n of unknowns. A linear system with at least one solution has at most one solution if
and only if the space of solutions of the associated homogeneous system has dimension zero (recall: in the
‘General = Particular + Homogeneous’ equation v =p + ]’_{, provided that such a p exists, the solution V is
unique if and only if the vector h is unique, namely h= 6). But that means, by the theorem, that n =r.

Two.l11.3.27 The set of columns must be dependent because the rank of the matrix is at most five while
there are nine columns.

Two.l11.3.28 There is little danger of their being equal since the row space is a set of row vectors while the
column space is a set of columns (unless the matrix is 1x 1, in which case the two spaces must be equal).

Remark. Consider
1 3
A =

and note that the row space is the set of all multiples of (1 3) while the column space consists of multiples

of
1
2
so we also cannot argue that the two spaces must be simply transposes of each other.

Two.l11.3.29 First, the vector space is the set of four-tuples of real numbers, under the natural operations.
Although this is not the set of four-wide row vectors, the difference is slight —it is “the same” as that set.
So we will treat the four-tuples like four-wide vectors.

With that, one way to see that (1,0,1,0) is not in the span of the first set is to note that this reduction

1 -1 2 -3 1T -1 2 =3
1T 12 0 ‘3‘%"2 2o 200 03
3 -1 6 —6) 7 0 00 0
and this one
1 -1 2 -3 1 -1 2 -3
1 1 2 0 —p1+p2 —pP2+pP3 P3<rpPa 0 2 0 3
— — 20
3 -1 6 —6 :?‘;p]'j‘;p3 —(1/2)p2+p4 0 o -1 3/2
1 01 of T 0 0 0 0
yield matrices differing in rank. This means that addition of (1,0, 1,0) to the set of the first three four-tuples

increases the rank, and hence the span, of that set. Therefore (1,0,1,0) is not already in the span.
Two.l11.3.30 It is a subspace because it is the column space of the matrix

3 2 4
1 0 —1
2 2 5
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of coefficients. To find a basis for the column space,

3 2 4
{er |1 +c2|0]+cs|—=1]]cr,c2,c3 R}
2 2 5
we take the three vectors from the spanning set, transpose, reduce,
3 1 2 3 1 2
2 0 2| WRBemZeetes 1o 53 23
4 —1 5) WReres o 0 0
and transpose back to get this.
3 0
(1], -=2/3))
2 2/3
Two.ll1.3.31 We can do this as a straightforward calculation.
Tay1+sbir ... Tain+sbin
(tA+sB)" = ;
TAm,1 +Sbm1 ... Tamn +Sbmn
Taj) +sbig ... TAm,1 +Sbm
Tain+sbin ... Tamn +Sbmn
TA1,1 ... TQm sbi,1 ... sbm
= : +
TA1n ... TQmn sbin ... sbmn
=1AT +sBT

Two.l11.3.32  (a) These reductions give different bases.

1 2 0 7pi>pz 1 2 0 1 2 0 7‘&)‘)2% 1 2 0
1 21 0 0 1 1T 2 1 0 0 2

(b) An easy example is this.

12 1 21
(3 : 4> 31 4
0 0 0
This is a less simplistic example.
1 21
1 21 31 4
31 4 2 4 2
4 5

(c) Assume that A and B are matrices with equal row spaces. Construct a matrix C with the rows of A
above the rows of B, and another matrix D with the rows of B above the rows of A.

i

Observe that C and D are row-equivalent (via a sequence of row-swaps) and so Gauss-Jordan reduce to
the same reduced echelon form matrix.

Because the row spaces are equal, the rows of B are linear combinations of the rows of A so Gauss-
Jordan reduction on C simply turns the rows of B to zero rows and thus the nonzero rows of C are
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just the nonzero rows obtained by Gauss-Jordan reducing A. The same can be said for the matrix D —
Gauss-Jordan reduction on D gives the same non-zero rows as are produced by reduction on B alone.
Therefore, A yields the same nonzero rows as C, which yields the same nonzero rows as D, which yields
the same nonzero rows as B.

Two.l11.3.33 It cannot be bigger.

Two.l11.3.34 The number of rows in a maximal linearly independent set cannot exceed the number of rows.
A better bound (the bound that is, in general, the best possible) is the minimum of m and n, because the
row rank equals the column rank.

Two.l11.3.35 Because the rows of a matrix A are the columns of AT the dimension of the row space of A
equals the dimension of the column space of AT. But the dimension of the row space of A is the rank of A
and the dimension of the column space of AT is the rank of AT. Thus the two ranks are equal.

Two.l11.3.36 False. The first is a set of columns while the second is a set of rows.

1 4
1 2
A:<4 s 2) AT=[2 5
3 6
indicates that as soon as we have a formal meaning for “the same”, we can apply it here:

Columnspace(A) = [{ (l) , (;) s (2) 1

Rowspace(AT) =[{(1 4),(2 5),(3 6)}

This example, however,

while

are “the same” as each other.

Two.l11.3.37 No. Here, Gauss’s Method does not change the column space.

1T 0 73p;+)pz 1 0
31 0 1

cidy 4+ +cpdp=d

Two.l11.3.38 A linear system

has a solution if and only if d is in the span of the set {@j,...,dn}. That'’s true if and only if the column
rank of the augmented matrix equals the column rank of the matrix of coefficients. Since rank equals the
column rank, the system has a solution if and only if the rank of its augmented matrix equals the rank of
its matrix of coefficients.

Two.l11.3.39  (a) Row rank equals column rank so each is at most the minimum of the number of rows and
columns. Hence both can be full only if the number of rows equals the number of columns. (Of course,
the converse does not hold: a square matrix need not have full row rank or full column rank.)

(b) If A has full row rank then, no matter what the right-hand side, Gauss’s Method on the augmented
matrix ends with a leading one in each row and none of those leading ones in the furthest right column
(the “augmenting” column). Back substitution then gives a solution.

On the other hand, if the linear system lacks a solution for some right-hand side it can only be
because Gauss’s Method leaves some row so that it is all zeroes to the left of the “augmenting” bar and
has a nonzero entry on the right. Thus, if A does not have a solution for some right-hand sides, then A
does not have full row rank because some of its rows have been eliminated.

(c) The matrix A has full column rank if and only if its columns form a linearly independent set. That’s
equivalent to the existence of only the trivial linear relationship among the column