Tensor Product - presentations

Presentations

Presentations

Examples.
(1) The dihedral group is often defined by a presentation:

Presentations

Examples.
(1) The dihedral group is often defined by a presentation:

Presentations

Examples.
(1) The dihedral group is often defined by a presentation:
D_{n}

Presentations

Examples.

(1) The dihedral group is often defined by a presentation:

$$
D_{n}=\left\langle r, f \mid r^{n}=1, f^{2}=1, f r f=r^{-1}\right\rangle
$$

Presentations

Examples.

(1) The dihedral group is often defined by a presentation:

$$
D_{n}=\left\langle r, f \mid r^{n}=1, f^{2}=1, f r f=r^{-1}\right\rangle \quad\left(\left\langle r, f \mid r^{n}, f^{2},(r f)^{2}\right\rangle\right)
$$

(2) A free object over X has presentation $\langle X \mid \emptyset\rangle$.

Presentations

Examples.

(1) The dihedral group is often defined by a presentation:

$$
D_{n}=\left\langle r, f \mid r^{n}=1, f^{2}=1, f r f=r^{-1}\right\rangle \quad\left(\left\langle r, f \mid r^{n}, f^{2},(r f)^{2}\right\rangle\right)
$$

(2) A free object over X has presentation $\langle X \mid \emptyset\rangle$.

Presentations

Examples.

(1) The dihedral group is often defined by a presentation:

$$
D_{n}=\left\langle r, f \mid r^{n}=1, f^{2}=1, f r f=r^{-1}\right\rangle \quad\left(\left\langle r, f \mid r^{n}, f^{2},(r f)^{2}\right\rangle\right) .
$$

(2) A free object over X has presentation $\langle X \mid \emptyset\rangle$.

Df. A presentation, relative to variety \mathcal{V}, is a pair $\langle G \mid R\rangle$ which represents the algebra $\mathbb{P}=\mathbb{F}_{\mathcal{V}}(G) / \Theta(R)$.

Presentations

Examples.

(1) The dihedral group is often defined by a presentation:

$$
D_{n}=\left\langle r, f \mid r^{n}=1, f^{2}=1, f r f=r^{-1}\right\rangle \quad\left(\left\langle r, f \mid r^{n}, f^{2},(r f)^{2}\right\rangle\right)
$$

(2) A free object over X has presentation $\langle X \mid \emptyset\rangle$.

Df. A presentation, relative to variety \mathcal{V}, is a pair $\langle G \mid R\rangle$ which represents the algebra $\mathbb{P}=\mathbb{F}_{\mathcal{V}}(G) / \Theta(R)$.

Universal Property.

Presentations

Examples.

(1) The dihedral group is often defined by a presentation:

$$
D_{n}=\left\langle r, f \mid r^{n}=1, f^{2}=1, f r f=r^{-1}\right\rangle \quad\left(\left\langle r, f \mid r^{n}, f^{2},(r f)^{2}\right\rangle\right) .
$$

(2) A free object over X has presentation $\langle X \mid \emptyset\rangle$.

Df. A presentation, relative to variety \mathcal{V}, is a pair $\langle G \mid R\rangle$ which represents the algebra $\mathbb{P}=\mathbb{F}_{\mathcal{V}}(G) / \Theta(R)$.

Universal Property. (Derived from the universal property of free objects using the First Isomorphism Theorem)

Presentations

Examples.

(1) The dihedral group is often defined by a presentation:

$$
D_{n}=\left\langle r, f \mid r^{n}=1, f^{2}=1, f r f=r^{-1}\right\rangle \quad\left(\left\langle r, f \mid r^{n}, f^{2},(r f)^{2}\right\rangle\right) .
$$

(2) A free object over X has presentation $\langle X \mid \emptyset\rangle$.

Df. A presentation, relative to variety \mathcal{V}, is a pair $\langle G \mid R\rangle$ which represents the algebra $\mathbb{P}=\mathbb{F}_{\mathcal{V}}(G) / \Theta(R)$.

Universal Property. (Derived from the universal property of free objects using the First Isomorphism Theorem) There is a set morphism $\iota: G \rightarrow \mathbb{P}$ such that, for every set morphism $g: G \rightarrow A$ into a \mathcal{V}-object \mathbb{A} where $g(G)$ satisfies the relations in R, there is a unique extension of g to an algebra morphism $\widehat{g}: \mathbb{P} \rightarrow \mathbb{A}$.

Presentations are convenient

Presentations are convenient

Suppose that $\left\langle G_{1} \mid R_{1}\right\rangle$ and $\left\langle G_{2} \mid R_{2}\right\rangle$ are disjoint presentations of \mathcal{V}-objects.

Presentations are convenient

Suppose that $\left\langle G_{1} \mid R_{1}\right\rangle$ and $\left\langle G_{2} \mid R_{2}\right\rangle$ are disjoint presentations of \mathcal{V}-objects. Then

$$
\left\langle G_{1} \mid R_{1}\right\rangle \sqcup\left\langle G_{2} \mid R_{2}\right\rangle \cong\left\langle G_{1} \cup G_{2} \mid R_{1} \cup R_{2}\right\rangle
$$

Presentations are convenient

Suppose that $\left\langle G_{1} \mid R_{1}\right\rangle$ and $\left\langle G_{2} \mid R_{2}\right\rangle$ are disjoint presentations of \mathcal{V}-objects. Then

$$
\left\langle G_{1} \mid R_{1}\right\rangle \sqcup\left\langle G_{2} \mid R_{2}\right\rangle \cong\left\langle G_{1} \cup G_{2} \mid R_{1} \cup R_{2}\right\rangle
$$

(Check)

Presentations are convenient

Suppose that $\left\langle G_{1} \mid R_{1}\right\rangle$ and $\left\langle G_{2} \mid R_{2}\right\rangle$ are disjoint presentations of \mathcal{V}-objects. Then

$$
\left\langle G_{1} \mid R_{1}\right\rangle \sqcup\left\langle G_{2} \mid R_{2}\right\rangle \cong\left\langle G_{1} \cup G_{2} \mid R_{1} \cup R_{2}\right\rangle
$$

(Check)
In particular, $\mathbb{F}_{\mathcal{V}}(X) \sqcup \mathbb{F}_{\mathcal{V}}(Y) \cong \mathbb{F}_{\mathcal{V}}(X \sqcup Y)$.

Presentations are convenient

Suppose that $\left\langle G_{1} \mid R_{1}\right\rangle$ and $\left\langle G_{2} \mid R_{2}\right\rangle$ are disjoint presentations of \mathcal{V}-objects. Then

$$
\left\langle G_{1} \mid R_{1}\right\rangle \sqcup\left\langle G_{2} \mid R_{2}\right\rangle \cong\left\langle G_{1} \cup G_{2} \mid R_{1} \cup R_{2}\right\rangle
$$

(Check)
In particular, $\mathbb{F}_{\mathcal{V}}(X) \sqcup \mathbb{F}_{\mathcal{V}}(Y) \cong \mathbb{F}_{\mathcal{V}}(X \sqcup Y)$. (And $\left.\sqcup_{\kappa} \mathbb{F}_{\mathcal{V}}(1) \cong \mathbb{F}_{\mathcal{V}}(\kappa).\right)$

Presentations are convenient

Suppose that $\left\langle G_{1} \mid R_{1}\right\rangle$ and $\left\langle G_{2} \mid R_{2}\right\rangle$ are disjoint presentations of \mathcal{V}-objects. Then

$$
\left\langle G_{1} \mid R_{1}\right\rangle \sqcup\left\langle G_{2} \mid R_{2}\right\rangle \cong\left\langle G_{1} \cup G_{2} \mid R_{1} \cup R_{2}\right\rangle
$$

(Check)
In particular, $\mathbb{F}_{\mathcal{V}}(X) \sqcup \mathbb{F}_{\mathcal{V}}(Y) \cong \mathbb{F}_{\mathcal{V}}(X \sqcup Y)$. (And $\left.\sqcup_{\kappa} \mathbb{F}_{\mathcal{V}}(1) \cong \mathbb{F}_{\mathcal{V}}(\kappa).\right)$
Exercise. Show that $\mathbb{Z}_{2} \sqcup \mathbb{Z}_{2}=\left\langle a, b \mid a^{2}=1=b^{2}\right\rangle$

Presentations are convenient

Suppose that $\left\langle G_{1} \mid R_{1}\right\rangle$ and $\left\langle G_{2} \mid R_{2}\right\rangle$ are disjoint presentations of \mathcal{V}-objects. Then

$$
\left\langle G_{1} \mid R_{1}\right\rangle \sqcup\left\langle G_{2} \mid R_{2}\right\rangle \cong\left\langle G_{1} \cup G_{2} \mid R_{1} \cup R_{2}\right\rangle
$$

(Check)
In particular, $\mathbb{F}_{\mathcal{V}}(X) \sqcup \mathbb{F}_{\mathcal{V}}(Y) \cong \mathbb{F}_{\mathcal{V}}(X \sqcup Y)$. (And $\left.\sqcup_{\kappa} \mathbb{F}_{\mathcal{V}}(1) \cong \mathbb{F}_{\mathcal{V}}(\kappa).\right)$
Exercise. Show that $\mathbb{Z}_{2} \sqcup \mathbb{Z}_{2}=\left\langle a, b \mid a^{2}=1=b^{2}\right\rangle \cong D_{\omega}$.

Presentations are inconvenient

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups.

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}(a "positive witness" to \mathcal{P}).

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}(a "positive witness" to \mathcal{P}). Assume that there exists a finitely presented group G_{-}not embeddable in any \mathcal{P}-group

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}(a "positive witness" to \mathcal{P}). Assume that there exists a finitely presented group G_{-}not embeddable in any \mathcal{P}-group (a "strong negative witness").

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}(a "positive witness" to \mathcal{P}). Assume that there exists a finitely presented group G_{-}not embeddable in any \mathcal{P}-group (a "strong negative witness"). It is algorithmically undecidable whether a finitely presented group has \mathcal{P}.

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}(a "positive witness" to \mathcal{P}). Assume that there exists a finitely presented group G_{-}not embeddable in any \mathcal{P}-group (a "strong negative witness"). It is algorithmically undecidable whether a finitely presented group has \mathcal{P}.

For example, we cannot tell from a finite presentation of a group whether the group it describes is trivial,

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}(a "positive witness" to \mathcal{P}). Assume that there exists a finitely presented group G_{-}not embeddable in any \mathcal{P}-group (a "strong negative witness"). It is algorithmically undecidable whether a finitely presented group has \mathcal{P}.

For example, we cannot tell from a finite presentation of a group whether the group it describes is trivial, finite,

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}(a "positive witness" to \mathcal{P}). Assume that there exists a finitely presented group G_{-}not embeddable in any \mathcal{P}-group (a "strong negative witness"). It is algorithmically undecidable whether a finitely presented group has \mathcal{P}.

For example, we cannot tell from a finite presentation of a group whether the group it describes is trivial, finite, or commutative.

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}(a "positive witness" to \mathcal{P}). Assume that there exists a finitely presented group G_{-}not embeddable in any \mathcal{P}-group (a "strong negative witness"). It is algorithmically undecidable whether a finitely presented group has \mathcal{P}.

For example, we cannot tell from a finite presentation of a group whether the group it describes is trivial, finite, or commutative. Here you can replace the commutative law with any law that fails to hold in some group.

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}(a "positive witness" to \mathcal{P}). Assume that there exists a finitely presented group G_{-}not embeddable in any \mathcal{P}-group (a "strong negative witness"). It is algorithmically undecidable whether a finitely presented group has \mathcal{P}.

For example, we cannot tell from a finite presentation of a group whether the group it describes is trivial, finite, or commutative. Here you can replace the commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with $\langle G \mid R\rangle$ is deciding if two elements α, β are equal:

Presentations are inconvenient

Thm. (Adian-Rabin) Let \mathcal{P} be a property of groups. Assume that there exists a \mathcal{P}-group G_{+}(a "positive witness" to \mathcal{P}). Assume that there exists a finitely presented group G_{-}not embeddable in any \mathcal{P}-group (a "strong negative witness"). It is algorithmically undecidable whether a finitely presented group has \mathcal{P}.

For example, we cannot tell from a finite presentation of a group whether the group it describes is trivial, finite, or commutative. Here you can replace the commutative law with any law that fails to hold in some group.

In general, the difficulty in dealing with $\langle G \mid R\rangle$ is deciding if two elements α, β are equal: $\alpha=w_{1}(G) / \Theta(R)=w_{2}(G) / \Theta(R)=\beta$ will hold iff the equality $w_{1}(G)=w_{2}(G)$ is provable from the set of relations R.

Tensor products of A-modules, A commutative

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations

- $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations

- $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations

- $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$
(2) $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations

- $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$
(2) $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations

- $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$
(2) $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$
(0) $a(m \otimes n)=(a m) \otimes n=m \otimes(a n)$,

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations

- $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$
(2) $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$
(0) $a(m \otimes n)=(a m) \otimes n=m \otimes(a n)$,

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations

- $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$
(2) $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$
- $a(m \otimes n)=(a m) \otimes n=m \otimes(a n), a \in A$

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations

- $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$
(2) $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$
© $a(m \otimes n)=(a m) \otimes n=m \otimes(a n), a \in A$
In words,

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations
(0) $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$
(2) $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$

- $a(m \otimes n)=(a m) \otimes n=m \otimes(a n), a \in A$

In words, $M \otimes_{A} N$ is the A-module generated by the set $M \times N=\{m \otimes n \mid m \in M, n \in N\}$ of simple tensors,

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations
(0) $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$
(2) $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$
(0) $a(m \otimes n)=(a m) \otimes n=m \otimes(a n), a \in A$

In words, $M \otimes_{A} N$ is the A-module generated by the set
$M \times N=\{m \otimes n \mid m \in M, n \in N\}$ of simple tensors, subject to the weakest set of relations needed to make \otimes an A-bilinear operation.

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations
(0) $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$
(2) $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$
(0) $a(m \otimes n)=(a m) \otimes n=m \otimes(a n), a \in A$

In words, $M \otimes_{A} N$ is the A-module generated by the set
$M \times N=\{m \otimes n \mid m \in M, n \in N\}$ of simple tensors, subject to the weakest set of relations needed to make \otimes an A-bilinear operation.

The universal property can be re-expressed as:
(1) There is a bilinear map $\otimes: M \times N \rightarrow M \otimes N:(m, n) \mapsto m \otimes n$, and

Tensor products of A-modules, A commutative

$M \otimes_{A} N=\langle M \times N \mid R\rangle$ where
(1) Generators $(m, n) \in M \times N$ are typically written $m \otimes n$, and called "simple tensors".
(2) R consists of the following relations
(0) $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$
(2) $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$
(0) $a(m \otimes n)=(a m) \otimes n=m \otimes(a n), a \in A$

In words, $M \otimes_{A} N$ is the A-module generated by the set
$M \times N=\{m \otimes n \mid m \in M, n \in N\}$ of simple tensors, subject to the weakest set of relations needed to make \otimes an A-bilinear operation.

The universal property can be re-expressed as:
(1) There is a bilinear map $\otimes: M \times N \rightarrow M \otimes N:(m, n) \mapsto m \otimes n$, and
(2) Any bilinear $g: M \times N \rightarrow L$ extends uniquely to an A-linear $\widehat{g}: M \otimes N \rightarrow L$.

Linear versus bilinear

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)$

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)$

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)$

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$,

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))$

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))$

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$.

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Notes.

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Notes.

(1) linear \neq bilinear

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Notes.

(1) linear \neq bilinear

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Notes.

(1) linear \neq bilinear
(2) linear \circ bilinear $=$ bilinear

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Notes.

(1) linear \neq bilinear
(2) linear \circ bilinear $=$ bilinear

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Notes.

(1) linear \neq bilinear
(2) linear \circ bilinear $=$ bilinear
(3) bilinear $($ linear,linear $)=$ bilinear

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Notes.

(1) linear \neq bilinear
(2) linear \circ bilinear $=$ bilinear
(3) bilinear $($ linear,linear $)=$ bilinear

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Notes.

(1) linear \neq bilinear
(2) linear \circ bilinear $=$ bilinear
(3) bilinear $($ linear, linear $)=$ bilinear
(9) multiplication $\cdot: A \times A \rightarrow A$ is bilinear

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Notes.

(1) linear \neq bilinear
(2) linear \circ bilinear $=$ bilinear
(3) bilinear $($ linear, linear $)=$ bilinear
(9) multiplication $\cdot: A \times A \rightarrow A$ is bilinear

Linear versus bilinear

A map $h: M \times N \rightarrow T$ is linear if it is an A-module homomorphism:
(1) $h\left(\left(m+m^{\prime}, n+n^{\prime}\right)\right)=h\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=h((m, n))+h\left(\left(m^{\prime}, n^{\prime}\right)\right)$, and
(2) $h(a(m, n))=a h((m, n))$.

A map $h: M \times N \rightarrow T$ is linear in its first variable if $h(x, n): M \rightarrow T$ is linear for any $n \in N$. A map $h: M \times N \rightarrow T$ is bilinear it is linear in each variable separately.

Notes.

(1) linear \neq bilinear
(2) linear \circ bilinear $=$ bilinear
(3) bilinear $($ linear, linear $)=$ bilinear
(9) multiplication $\cdot: A \times A \rightarrow A$ is bilinear

Universal arrow for \otimes

Universal arrow for \otimes

Universal arrow for \otimes

Universal arrow for \otimes

Universal arrow for \otimes

Universal arrow for \otimes

A-Mod

Universal arrow for \otimes

A-Mod

Universal arrow for \otimes

Examples

Examples

Claim. In $M \otimes_{A} N$,

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Examples

Claim. In $M \otimes_{A} N$, $0 \otimes n=0$ for any n.

Proof.

Examples

Claim. In $M \otimes_{A} N$, $0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n
$$

Examples

Claim. In $M \otimes_{A} N$, $0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n
$$

Examples

Claim. In $M \otimes_{A} N$, $0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Examples

Claim. In $M \otimes_{A} N$, $0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides.

Examples

Claim. In $M \otimes_{A} N$, $0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square
Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square

Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b
$$

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square

Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b=a \otimes 4 b
$$

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square

Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b=a \otimes 4 b=4(a \otimes b)
$$

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square

Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b=a \otimes 4 b=4(a \otimes b)=4 a \otimes b
$$

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square

Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b=a \otimes 4 b=4(a \otimes b)=4 a \otimes b=0 \otimes b
$$

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square

Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b=a \otimes 4 b=4(a \otimes b)=4 a \otimes b=0 \otimes b=0
$$

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square

Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b=a \otimes 4 b=4(a \otimes b)=4 a \otimes b=0 \otimes b=0
$$

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square
Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b=a \otimes 4 b=4(a \otimes b)=4 a \otimes b=0 \otimes b=0 . \square
$$

"Proof 2".

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square
Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b=a \otimes 4 b=4(a \otimes b)=4 a \otimes b=0 \otimes b=0
$$

"Proof $\mathbf{2}$ ". We need to argue that any bilinear map $b: \mathbb{Z}_{2} \times_{\mathbb{Z}} \mathbb{Z}_{3} \rightarrow A$ into a \mathbb{Z}-module is constant.

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square
Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b=a \otimes 4 b=4(a \otimes b)=4 a \otimes b=0 \otimes b=0
$$

"Proof $\mathbf{2}$ ". We need to argue that any bilinear map $b: \mathbb{Z}_{2} \times_{\mathbb{Z}} \mathbb{Z}_{3} \rightarrow A$ into a \mathbb{Z}-module is constant. Copy the idea of Proof 1 .

Examples

Claim. In $M \otimes_{A} N$,
$0 \otimes n=0$ for any n.

Proof.

$$
0 \otimes n=(0+0) \otimes n=(0 \otimes n)+(0 \otimes n)
$$

Cancel $0 \otimes n$ from both sides. \square
Claim. $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$.
"Proof 1".

$$
a \otimes b=a \otimes 4 b=4(a \otimes b)=4 a \otimes b=0 \otimes b=0
$$

"Proof $\mathbf{2}$ ". We need to argue that any bilinear map $b: \mathbb{Z}_{2} \times_{\mathbb{Z}} \mathbb{Z}_{3} \rightarrow A$ into a \mathbb{Z}-module is constant. Copy the idea of Proof $1 . \square$.

Not every element of $M \otimes_{A} N$ is a simple tensor

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$ and let $M=N=\mathbb{R}^{2}$.

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$ and let $M=N=\mathbb{R}^{2}$.
$b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{R}):(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u v}^{t}$ is bilinear:

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$ and let $M=N=\mathbb{R}^{2}$.
$b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{R}):(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u v}^{t}$ is bilinear:

$$
\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right) \mapsto\left[\begin{array}{ll}
a c & a d \\
b c & b d
\end{array}\right],
$$

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$ and let $M=N=\mathbb{R}^{2}$.
$b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{R}):(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u v}^{t}$ is bilinear:

$$
\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right) \mapsto\left[\begin{array}{ll}
a c & a d \\
b c & b d
\end{array}\right], \quad \text { a matrix of } \operatorname{rank} \leq 1
$$

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$ and let $M=N=\mathbb{R}^{2}$.
$b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{R}):(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u v}^{t}$ is bilinear:

$$
\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right) \mapsto\left[\begin{array}{ll}
a c & a d \\
b c & b d
\end{array}\right], \quad \text { a matrix of rank } \leq 1
$$

$b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ consists of precisely those matrices in $M_{2}(\mathbb{R})$ of rank ≤ 1.

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$ and let $M=N=\mathbb{R}^{2}$.
$b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{R}):(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u v}^{t}$ is bilinear:

$$
\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right) \mapsto\left[\begin{array}{ll}
a c & a d \\
b c & b d
\end{array}\right], \quad \text { a matrix of rank } \leq 1
$$

$b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ consists of precisely those matrices in $M_{2}(\mathbb{R})$ of rank ≤ 1. So, $\operatorname{span}\left(b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)\right)$

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$ and let $M=N=\mathbb{R}^{2}$.
$b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{R}):(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u v}^{t}$ is bilinear:

$$
\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right) \mapsto\left[\begin{array}{ll}
a c & a d \\
b c & b d
\end{array}\right], \quad \text { a matrix of rank } \leq 1
$$

$b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ consists of precisely those matrices in $M_{2}(\mathbb{R})$ of rank ≤ 1. So, $\operatorname{span}\left(b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)\right)=M_{2}(\mathbb{R})$.

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$ and let $M=N=\mathbb{R}^{2}$.
$b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{R}):(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u v}^{t}$ is bilinear:

$$
\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right) \mapsto\left[\begin{array}{ll}
a c & a d \\
b c & b d
\end{array}\right], \quad \text { a matrix of rank } \leq 1
$$

$b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ consists of precisely those matrices in $M_{2}(\mathbb{R})$ of rank ≤ 1. So, $\operatorname{span}\left(b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)\right)=M_{2}(\mathbb{R})$.
There must be a factorization

$$
b: \mathbb{R}^{2} \times \mathbb{R}^{2} \xrightarrow{\text { bilinear }} \mathbb{R}^{2} \otimes_{\mathbb{R}} \mathbb{R}^{2} \xrightarrow{\text { linear }} M_{2}(\mathbb{R})
$$

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$ and let $M=N=\mathbb{R}^{2}$.
$b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{R}):(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u v}^{t}$ is bilinear:

$$
\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right) \mapsto\left[\begin{array}{ll}
a c & a d \\
b c & b d
\end{array}\right], \quad \text { a matrix of rank } \leq 1
$$

$b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ consists of precisely those matrices in $M_{2}(\mathbb{R})$ of rank ≤ 1. So, $\operatorname{span}\left(b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)\right)=M_{2}(\mathbb{R})$.
There must be a factorization

$$
b: \mathbb{R}^{2} \times \mathbb{R}^{2} \xrightarrow{\text { bilinear }} \mathbb{R}^{2} \otimes_{\mathbb{R}} \mathbb{R}^{2} \xrightarrow{\text { linear }} M_{2}(\mathbb{R})
$$

Composite is surjective, so the linear map is an isomorphism.

Not every element of $M \otimes_{A} N$ is a simple tensor

Let $A=\mathbb{R}$ and let $M=N=\mathbb{R}^{2}$.
$b: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{R}):(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u v}^{t}$ is bilinear:

$$
\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right) \mapsto\left[\begin{array}{ll}
a c & a d \\
b c & b d
\end{array}\right], \quad \text { a matrix of rank } \leq 1
$$

$b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ consists of precisely those matrices in $M_{2}(\mathbb{R})$ of rank ≤ 1.
So, $\operatorname{span}\left(b\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)\right)=M_{2}(\mathbb{R})$.
There must be a factorization

$$
b: \mathbb{R}^{2} \times \mathbb{R}^{2} \xrightarrow{\text { bilinear }} \mathbb{R}^{2} \otimes_{\mathbb{R}} \mathbb{R}^{2} \xrightarrow{\text { linear }} M_{2}(\mathbb{R})
$$

Composite is surjective, so the linear map is an isomorphism. A rank 2 matrix will be expressible as a sum of 2 simple tensors, but will not be a simple tensor itself.

Tensor product of vector spaces

Tensor product of vector spaces

The previous example can be modified to show that, if \mathbb{F} is a field, then $\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n} \cong M_{m \times n}(\mathbb{F})$.

Tensor product of vector spaces

The previous example can be modified to show that, if \mathbb{F} is a field, then $\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n} \cong M_{m \times n}(\mathbb{F})$.

In particular, $\operatorname{dim}_{\mathbb{F}}\left(\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n}\right)=m n$.

Tensor product of vector spaces

The previous example can be modified to show that, if \mathbb{F} is a field, then $\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n} \cong M_{m \times n}(\mathbb{F})$.

In particular, $\operatorname{dim}_{\mathbb{F}}\left(\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n}\right)=m n$.
In fact, one can prove that the tensor product of free A-modules of ranks m and n is free of rank $m n$ using the isomorphisms

Tensor product of vector spaces

The previous example can be modified to show that, if \mathbb{F} is a field, then $\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n} \cong M_{m \times n}(\mathbb{F})$.

In particular, $\operatorname{dim}_{\mathbb{F}}\left(\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n}\right)=m n$.
In fact, one can prove that the tensor product of free A-modules of ranks m and n is free of rank $m n$ using the isomorphisms
(1) $A \otimes_{A} A \cong A$.

Tensor product of vector spaces

The previous example can be modified to show that, if \mathbb{F} is a field, then $\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n} \cong M_{m \times n}(\mathbb{F})$.

In particular, $\operatorname{dim}_{\mathbb{F}}\left(\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n}\right)=m n$.
In fact, one can prove that the tensor product of free A-modules of ranks m and n is free of rank $m n$ using the isomorphisms
(1) $A \otimes_{A} A \cong A$.

Tensor product of vector spaces

The previous example can be modified to show that, if \mathbb{F} is a field, then $\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n} \cong M_{m \times n}(\mathbb{F})$.

In particular, $\operatorname{dim}_{\mathbb{F}}\left(\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n}\right)=m n$.
In fact, one can prove that the tensor product of free A-modules of ranks m and n is free of rank $m n$ using the isomorphisms
(1) $A \otimes_{A} A \cong A$. (Use mult. to get a map \rightarrow and freeness of A to get \leftarrow.)

Tensor product of vector spaces

The previous example can be modified to show that, if \mathbb{F} is a field, then $\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n} \cong M_{m \times n}(\mathbb{F})$.

In particular, $\operatorname{dim}_{\mathbb{F}}\left(\mathbb{F}^{m} \otimes_{\mathbb{F}} \mathbb{F}^{n}\right)=m n$.
In fact, one can prove that the tensor product of free A-modules of ranks m and n is free of rank $m n$ using the isomorphisms
(1) $A \otimes_{A} A \cong A$. (Use mult. to get a map \rightarrow and freeness of A to get \leftarrow.)
(2) $M \otimes_{A}\left(\bigoplus N_{i}\right) \cong \bigoplus\left(M \otimes_{A} N_{i}\right)$.

Deciding if two elements of $M \otimes_{A} N$ are equal

Deciding if two elements of $M \otimes_{A} N$ are equal

$$
\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j} \text { iff }\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0,
$$

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.

Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.

Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{A} N_{0}$

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.

Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{A} N_{0}$ where $M_{0} \leq M, N_{0} \leq N$,

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.

Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{A} N_{0}$ where $M_{0} \leq M, N_{0} \leq N$, both M_{0} and N_{0} are finitely generated,

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.

Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{A} N_{0}$ where $M_{0} \leq M, N_{0} \leq N$, both M_{0} and N_{0} are finitely generated, and $\forall i\left(m_{i} \in M_{0}\right), \forall i\left(n_{i} \in N_{0}\right)$.

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.

Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{A} N_{0}$ where $M_{0} \leq M, N_{0} \leq N$, both M_{0} and N_{0} are finitely generated, and $\forall i\left(m_{i} \in M_{0}\right), \forall i\left(n_{i} \in N_{0}\right)$.

Why?

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.
Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{\mathrm{A}} N_{0}$ where $M_{0} \leq M, N_{0} \leq N$, both M_{0} and N_{0} are finitely generated, and $\forall i\left(m_{i} \in M_{0}\right), \forall i\left(n_{i} \in N_{0}\right)$.

Why?
Because a proof of $\alpha=0$ has finite length.

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.
Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{\mathrm{A}} N_{0}$ where $M_{0} \leq M, N_{0} \leq N$, both M_{0} and N_{0} are finitely generated, and $\forall i\left(m_{i} \in M_{0}\right), \forall i\left(n_{i} \in N_{0}\right)$.

Why?
Because a proof of $\alpha=0$ has finite length. \square

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.
Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{\mathrm{A}} N_{0}$ where $M_{0} \leq M, N_{0} \leq N$, both M_{0} and N_{0} are finitely generated, and $\forall i\left(m_{i} \in M_{0}\right), \forall i\left(n_{i} \in N_{0}\right)$.

Why?
Because a proof of $\alpha=0$ has finite length. \square

Related example.

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.
Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{\mathrm{A}} N_{0}$ where $M_{0} \leq M, N_{0} \leq N$, both M_{0} and N_{0} are finitely generated, and $\forall i\left(m_{i} \in M_{0}\right)$, $\forall i\left(n_{i} \in N_{0}\right)$.

Why?
Because a proof of $\alpha=0$ has finite length. \square

Related example.

$1 \otimes 1=0$ in $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Q}$,

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.
Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{\mathrm{A}} N_{0}$ where $M_{0} \leq M, N_{0} \leq N$, both M_{0} and N_{0} are finitely generated, and $\forall i\left(m_{i} \in M_{0}\right), \forall i\left(n_{i} \in N_{0}\right)$.

Why?
Because a proof of $\alpha=0$ has finite length. \square

Related example.

$1 \otimes 1=0$ in $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Q}$, but not in $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}$.

Deciding if two elements of $M \otimes_{A} N$ are equal

$\sum_{i=1}^{k} m_{i} \otimes n_{i}=\sum_{j=1}^{\ell} p_{j} \otimes q_{j}$ iff $\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)-\left(\sum_{j=1}^{\ell} p_{j} \otimes q_{j}\right)=0$, so we only need to decide when an element equals zero.
Fact 1. (May assume M, N f.g.)
The element $\alpha=\sum_{i=1}^{k} m_{i} \otimes n_{i}$ is zero in $M \otimes_{A} N$ iff it is zero in some $M_{0} \otimes_{\mathrm{A}} N_{0}$ where $M_{0} \leq M, N_{0} \leq N$, both M_{0} and N_{0} are finitely generated, and $\forall i\left(m_{i} \in M_{0}\right)$, $\forall i\left(n_{i} \in N_{0}\right)$.

Why?
Because a proof of $\alpha=0$ has finite length. \square

Related example.

$1 \otimes 1=0$ in $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Q}$, but not in $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}$. (Can shrink $N=\mathbb{Q}$ to $N_{0}=\frac{1}{2} \mathbb{Z}$.)

(Pierre) Mazet's Theorem

(Pierre) Mazet's Theorem

Caracterisation des epimorphismes par relations et generateurs Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1-8

(Pierre) Mazet's Theorem

Caracterisation des epimorphismes par relations et generateurs Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1-8

Thm. Assume that $M=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ and $N=\left\langle f_{1}, \ldots, f_{n}\right\rangle$. An element $\alpha \in M \otimes_{A} N$ equals zero iff it has a right-collected form whose left-collected form is trivial.

(Pierre) Mazet's Theorem

Caracterisation des epimorphismes par relations et generateurs Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1-8

Thm. Assume that $M=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ and $N=\left\langle f_{1}, \ldots, f_{n}\right\rangle$. An element $\alpha \in M \otimes_{A} N$ equals zero iff it has a right-collected form whose left-collected form is trivial.
$\alpha=\sum_{i} \sum_{j} r_{i j}\left(e_{i} \otimes f_{j}\right)$

(Pierre) Mazet's Theorem

Caracterisation des epimorphismes par relations et generateurs Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1-8

Thm. Assume that $M=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ and $N=\left\langle f_{1}, \ldots, f_{n}\right\rangle$. An element $\alpha \in M \otimes_{A} N$ equals zero iff it has a right-collected form whose left-collected form is trivial.
$\alpha=\sum_{i} \sum_{j} r_{i j}\left(e_{i} \otimes f_{j}\right)$
Right-collected form: $e_{1} \otimes\left(\sum r_{1 j} f_{j}\right)+\cdots+e_{m} \otimes\left(\sum r_{m} f_{j}\right)$.

(Pierre) Mazet's Theorem

Caracterisation des epimorphismes par relations et generateurs Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1-8

Thm. Assume that $M=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ and $N=\left\langle f_{1}, \ldots, f_{n}\right\rangle$. An element $\alpha \in M \otimes_{A} N$ equals zero iff it has a right-collected form whose left-collected form is trivial.
$\alpha=\sum_{i} \sum_{j} r_{i j}\left(e_{i} \otimes f_{j}\right)$
Right-collected form: $e_{1} \otimes\left(\sum r_{1 j} f_{j}\right)+\cdots+e_{m} \otimes\left(\sum r_{m} f_{j}\right)$.
Associated left-collected form: $\left(\sum r_{i 1} e_{i}\right) \otimes f_{1}+\cdots+\left(\sum r_{i n} e_{i}\right) \otimes f_{n}$.

(Pierre) Mazet's Theorem

Caracterisation des epimorphismes par relations et generateurs Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1-8

Thm. Assume that $M=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ and $N=\left\langle f_{1}, \ldots, f_{n}\right\rangle$. An element $\alpha \in M \otimes_{A} N$ equals zero iff it has a right-collected form whose left-collected form is trivial.
$\alpha=\sum_{i} \sum_{j} r_{i j}\left(e_{i} \otimes f_{j}\right)$
Right-collected form: $e_{1} \otimes\left(\sum r_{1 j} f_{j}\right)+\cdots+e_{m} \otimes\left(\sum r_{m} f_{j}\right)$.
Associated left-collected form: $\left(\sum r_{i 1} e_{i}\right) \otimes f_{1}+\cdots+\left(\sum r_{i n} e_{i}\right) \otimes f_{n}$.
The matrix involved:

$$
\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 n} \\
\vdots & & \\
r_{m 1} & \cdots & r_{m n}
\end{array}\right]
$$

(Pierre) Mazet's Theorem

Caracterisation des epimorphismes par relations et generateurs Séminaire Samuel. Algèbre commutative, tome 2 (1967-1968), p. 1-8

Thm. Assume that $M=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ and $N=\left\langle f_{1}, \ldots, f_{n}\right\rangle$. An element $\alpha \in M \otimes_{A} N$ equals zero iff it has a right-collected form whose left-collected form is trivial.
$\alpha=\sum_{i} \sum_{j} r_{i j}\left(e_{i} \otimes f_{j}\right)$
Right-collected form: $e_{1} \otimes\left(\sum r_{1 j} f_{j}\right)+\cdots+e_{m} \otimes\left(\sum r_{m} f_{j}\right)$.
Associated left-collected form: $\left(\sum r_{i 1} e_{i}\right) \otimes f_{1}+\cdots+\left(\sum r_{i n} e_{i}\right) \otimes f_{n}$.
The matrix involved:

$$
\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 n} \\
\vdots & & \\
r_{m 1} & \cdots & r_{m n}
\end{array}\right] \leadsto\left[\begin{array}{ccc}
r_{11}^{\prime} & \cdots & r_{1 n}^{\prime} \\
\vdots & & \\
r_{m 1}^{\prime} & \cdots & r_{m n}^{\prime}
\end{array}\right]
$$

Example

Example

$$
\alpha=1 \otimes 1
$$

Example

$\alpha=1 \otimes 1 \in \mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}$ is zero.

Example

$\alpha=1 \otimes 1 \in \mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}$ is zero.
Since $\alpha=1 \otimes(1 \cdot 1)$

Example

$\alpha=1 \otimes 1 \in \mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}$ is zero.
Since $\alpha=1 \otimes(1 \cdot 1)=1 \otimes\left(r_{11} \cdot 1\right)$ is a right-collected form, one matrix that represents α is $\left[r_{11}\right]=[1]$.

Example

$\alpha=1 \otimes 1 \in \mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}$ is zero.
Since $\alpha=1 \otimes(1 \cdot 1)=1 \otimes\left(r_{11} \cdot 1\right)$ is a right-collected form, one matrix that represents α is $\left[r_{11}\right]=[1]$.

But $[1] \leadsto[4]$ also represents α, i.e. $1 \otimes(4 \cdot 1)$ is a right-collected form for α.

Example

$\alpha=1 \otimes 1 \in \mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}$ is zero.
Since $\alpha=1 \otimes(1 \cdot 1)=1 \otimes\left(r_{11} \cdot 1\right)$ is a right-collected form, one matrix that represents α is $\left[r_{11}\right]=[1]$.

But $[1] \leadsto[4]$ also represents α, i.e. $1 \otimes(4 \cdot 1)$ is a right-collected form for α. The left-collected form is $(4 \cdot 1) \otimes 1$,

Example

$\alpha=1 \otimes 1 \in \mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}$ is zero.
Since $\alpha=1 \otimes(1 \cdot 1)=1 \otimes\left(r_{11} \cdot 1\right)$ is a right-collected form, one matrix that represents α is $\left[r_{11}\right]=[1]$.

But $[1] \leadsto[4]$ also represents α, i.e. $1 \otimes(4 \cdot 1)$ is a right-collected form for α. The left-collected form is $(4 \cdot 1) \otimes 1$, which is trivial.

Simple criterion for $M \otimes_{A} N=0$

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s$,

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}$,

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$.

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$, $m \otimes n$

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)
$$

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)=r(m \otimes n)+s(m \otimes n)
$$

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)=r(m \otimes n)+s(m \otimes n)=r m \otimes n+m \otimes s n
$$

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)=r(m \otimes n)+s(m \otimes n)=r m \otimes n+m \otimes s n=0 .
$$

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)=r(m \otimes n)+s(m \otimes n)=r m \otimes n+m \otimes s n=0 .
$$

$[\Rightarrow]$

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)=r(m \otimes n)+s(m \otimes n)=r m \otimes n+m \otimes s n=0 .
$$

$[\Rightarrow]$
If $\operatorname{Ann}(M)+\operatorname{Ann}(N) \neq A$, there exists $I \prec A$ containing the sum.

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)=r(m \otimes n)+s(m \otimes n)=r m \otimes n+m \otimes s n=0 .
$$

$[\Rightarrow]$
If $\operatorname{Ann}(M)+\operatorname{Ann}(N) \neq A$, there exists $I \prec A$ containing the sum. $M \neq I M$ by Nakayama.

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)=r(m \otimes n)+s(m \otimes n)=r m \otimes n+m \otimes s n=0 .
$$

$[\Rightarrow]$
If $\operatorname{Ann}(M)+\operatorname{Ann}(N) \neq A$, there exists $I \prec A$ containing the sum. $M \neq I M$ by Nakayama.
$M / I M, N / I N$ are vec. spaces over $A / I, \neq 0$,

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)=r(m \otimes n)+s(m \otimes n)=r m \otimes n+m \otimes s n=0 .
$$

$[\Rightarrow]$
If $\operatorname{Ann}(M)+\operatorname{Ann}(N) \neq A$, there exists $I \prec A$ containing the sum. $M \neq I M$ by Nakayama.
$M / I M, N / I N$ are vec. spaces over $A / I, \neq 0$, so $M / I M \otimes_{A} N / I N \neq 0$.

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)=r(m \otimes n)+s(m \otimes n)=r m \otimes n+m \otimes s n=0 .
$$

$[\Rightarrow]$
If $\operatorname{Ann}(M)+\operatorname{Ann}(N) \neq A$, there exists $I \prec A$ containing the sum. $M \neq I M$ by Nakayama.
$M / I M, N / I N$ are vec. spaces over $A / I, \neq 0$, so $M / I M \otimes_{A} N / I N \neq 0$. But the image of $M \times N \rightarrow(M / I M) \times_{A}(N / I N) \rightarrow(M / I M) \otimes_{A}(N / I N)$ generates this space.

Simple criterion for $M \otimes_{A} N=0$

Thm. If M and N are f.g., then $M \otimes_{A} N=0$ iff $\operatorname{Ann}(M)+\operatorname{Ann}(N)=A$.
For example, $\mathbb{Z}_{2} \otimes_{\mathbb{Z}} \mathbb{Z}_{3}=0$!
Proof.
[\Leftarrow does not require f.g.]
Assume that $1=r+s, r M=\{0\}, s N=\{0\}$. If $m \otimes n \in M \otimes_{A} N$,

$$
m \otimes n=(r+s)(m \otimes n)=r(m \otimes n)+s(m \otimes n)=r m \otimes n+m \otimes s n=0 .
$$

$[\Rightarrow]$
If $\operatorname{Ann}(M)+\operatorname{Ann}(N) \neq A$, there exists $I \prec A$ containing the sum. $M \neq I M$ by Nakayama.
$M / I M, N / I N$ are vec. spaces over $A / I, \neq 0$, so $M / I M \otimes_{A} N / I N \neq 0$. But the image of $M \times N \rightarrow(M / I M) \times_{A}(N / I N) \rightarrow(M / I M) \otimes_{A}(N / I N)$ generates this space.

