Linear Algebra
 Quiz 5

Name:

\qquad
You have 10 minutes to complete this quiz. If you have a question raise your hand and remain seated. In order to receive full credit your answer must be complete, legible and correct. Show your work, and give adequate explanations.

1. Define what it means for vector spaces V and W to be isomorphic.
V is isomorphic to W if there is a linear transformation $T: V \rightarrow W$ that is invertible.
2. Let $\mathcal{B}=\left(1, t, t^{2}\right)$ and let $\mathcal{C}=\left(-1+t+t^{2}, 1-t+t^{2}, 1+t-t^{2}\right)$.
(1) Write the vectors in \mathcal{C} in the \mathcal{B}-basis for the space $\mathbb{P}_{2}(t)$.

$$
\mathcal{C}=\left(\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]\right)
$$

(2) Is \mathcal{C} a basis for $\mathbb{P}_{2}(t)$? (Explain.)

Yes. One can check that the vectors in \mathcal{C} are a basis by showing that $[\mathcal{C}]_{G J E}=I$ (a pivot in every row and column).

