LINEAR ALGEBRA (MATH 3130) SECTION 2, SPRING 2013 REVIEW SHEET

From the book: Sections 1.1–6.5, excluding Sections 4.8, 5.6–5.8.

- I. Systems of linear equations.
 - (a) Augmented matrix and coefficient matrix of a system.
 - (b) Row reduction. (Reduced) row echelon form. Pivots, pivot positions, pivot columns.
 - (c) Free and basic(=pivot) variables. Solutions sets. Parametrized form of a solution.
 - (d) Consistent and inconsistent systems.
 - (e) Homogeneous systems. Relationship between solutions of $A\mathbf{x} = \mathbf{b}$ and solutions of $A\mathbf{x} = \mathbf{0}$.
- II. Matrix arithmetic.
 - (a) Matrices can be added, negated, multiplied with each other, and scaled, provided the dimensions are right.
 - (b) The collection of $n \times n$ real matrices forms an " \mathbb{R} -algebra", which is noncommutative if n > 1. (This statement indicates which laws of arithmetic are valid for $n \times n$ natrices, namely the ring laws. These laws are enumerated in Theorems 1 and 2 on pages 93 and 97.)
 - (d) Matrix transpose.
 - (e) Left and right inverses. (Equivalent properties.) Two-sided inverses. A 1-sided invertible matrix is 2-sided invertible iff it is square.
 - (f) Elementary matrices. Row reduction is expressible as left multiplication by a sequence of elementary matrices. Matrices A and B are row equivalent iff A = LB for some invertible matrix L.
 - (g) Algorithm for finding inverses.
 - (h) Partitioned matrices. Block diagonal and block triangular matrices.
- III. Vectors and vector spaces.
 - (a) Linear systems may be viewed as vector equations.
 - (b) Definition of vector space. Definition of subspace.
 - (c) Geometric interpretation of vector space operations.
 - (d) Definition of column space and nullspace of a matrix.
 - (e) Spanning set of vectors.
 - (f) Linearly (in)dependent set of vectors.
- IV. Linear Transformations.
 - (a) Definition. Fact that any linear transformation has the form $T(\mathbf{x}) = A\mathbf{x}$.
 - (b) The problem of solving the linear system $A\mathbf{x} = \mathbf{b}$ may be viewed as the problem of finding a vector $\mathbf{x} \in T^{-1}(\mathbf{b})$ for $T(\mathbf{x}) = A\mathbf{x}$.
 - (c) One-to-one and onto transformations.
 - (d) Finding the standard matrix of a transformation.
 - (e) Matrices for rotation and reflection in the plane.
- V. Matrix factorization.
 - (a) LU factorization.

 $\mathbf{2}$

- (b) Solving systems with an LU factorization.
- VI. Applications.
 - (a) Balancing a chemical reaction.
 - (b) Network flow.
 - (c) Predator-prey dynamics.
 - (d) Leontief economic model.
- VII. Affine transformations.
 - (a) An affine transformation has the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{t}$. Examples: translations, plane reflections about an arbitrary line, and plane rotations about an arbitrary point.
 - (b) Affine transformations in \mathbb{R}^n may be represented in homogeneous coordinates in \mathbb{R}^{n+1} by matrices of the form $\left[\frac{A}{0} \mid \frac{\mathbf{t}}{1}\right]$.
- VIII. Subspaces
 - (a) The structure of subspaces of \mathbb{R}^n .
 - (b) Four fundamental subspaces: Col(A), Nul(A), $Row(A) = Col(A^T)$, and $Nul(A^T)$.
 - (c) Ordered and unordered bases for a subspace.
 - (d) Algorithms for finding bases for Nul(A), Row(A), and Col(A).
 - (e) Standard basis for \mathbb{R}^n .
 - (f) Dimension of a subspace.
 - (g) Rank and nullity of a matrix. Rank + nullity theorem.
 - (h) Proof that "dimension" is well defined, namely, that the size of any independent set is less or equal the size of any spanning set, and that a maximal independent set is spanning while a minimal spanning set is independent.
 - IX. The determinant.
 - (a) Signed volume.
 - (b) Minor, cofactor, definition of the determinant via the Laplace expansion.
 - (c) det(A) is defined only if A is square. $det(A) \neq 0$ iff the columns of A are independent.
 - (d) Adjugate matrix. Fact that $A \cdot \operatorname{adj}(A) = \det(A) \cdot I$, hence $A^{-1} = (1/\det(A))\operatorname{adj}(A)$ when A is invertible.
 - (e) Further properties: det(AB) = det(A) det(B), the determinant can be computed by Gaussian elimination, the determinant of a block triangular matrix if the product of the determinants of the blocks, if $T(\mathbf{x}) = A\mathbf{x}$, then the determinant of A measures the "volume expansion" associated with T.
 - (f) "Correct" definition: the determinant is the unique alternating multilinear function d of n variables defined on \mathbb{R}^n for which $d(\mathbf{e}_1, \ldots, \mathbf{e}_n) = 1$.
 - (g) Permutation expansion of the determinant. Fact that $det(A) = det(A^T)$.
 - (h) Cramer's Rule for solving a linear system $A\mathbf{x} = \mathbf{b}$ with invertible A.
 - X. Abstract vector spaces.
 - (a) Meaning of the word "abstract".
 - (b) Definition and examples of abstract vector spaces, e.g., $M_{m \times n}(\mathbb{R})$, $\mathbb{P}_n(t)$, $C^k([0,1])$. We computed that $M_{m \times n}(\mathbb{R})$, has dimension mn, $\mathbb{P}_n(t)$ has dimension n+1, and that $C^0([0,1])$ must be infinite dimensional.
 - (c) Coordinates relative to a basis.

- (d) Definition of "isomorphism" of vector spaces. Proof that every finitely generated real vector space is isomorphic to \mathbb{R}^n for some finite n.
- (e) Matrices, $_{\mathcal{C}}[T]_{\mathcal{B}}$, for linear transformations between abstract vector spaces. Change of basis matrices, $_{\mathcal{C}}[I]_{\mathcal{B}}$.
- XI. Markov chains.
 - (a) Definitions of: probability vector, (left, right, doubly) stochastic matrix and Markov chain.
 - (b) Steady state vector.
 - (c) Regular stochastic matrices have a unique steady state vector that is a probability vector. Its entries are strictly positive.
- XII. Eigenvalues, eigenvectors, eigenspaces.
 - (a) Eigenvectors identify "preserved directions" of a linear transformation $T: V \to V$.
 - (b) Definitions of eigenvector, eigenvalue, eigenspaces.
 - (c) Methods of calculation: characteristic polynomial $\chi_A(\lambda)$ equals det $(A \lambda I)$; e-values of A are the roots of $\chi_A(\lambda) = 0$; e-space V_λ equals Nul $(A - \lambda I)$; λ -eigenvectors are the nonzero vectors of V_{λ} . Fast calculation of e-values for (block) triangular matrices.
- XIII. Diagonalization.
 - (a) Structure of roots of a real polynomial over \mathbb{R} or \mathbb{C} , and of a complex polynomial over C. Algebraic multiplicity of an e-value.
 - (b) Geometric multiplicity of an e-value.
 - (c) Defn. of "diagonalizable". Thm. A transformation $T: V \to V$ is diagonalizable iff V has a basis consisting of e-vectors for T iff the geometric multiplicity of each e-value equals its algebraic multiplicity.
 - (d) Independence of subspaces. Sums of subspaces and direct sums of independent subspaces. A sum of distinct e-spaces is direct. $T: V \to V$ is diagonalizable iff $V = \bigoplus_{\lambda} V_{\lambda}$. (Side observation: $\dim(U \oplus W) = \dim(U) + \dim(W)$.)
 - (e) Similarity: A is similar to B if A is a conjugate of B, i.e., $A = S^{-1}BS$. Similarity is an equivalence relation on the set of $n \times n$ matrices. Matrices are similar iff they represent the same transformation relative to different bases. Similar matrices have the same characteristic polynomial, hence same e-values. If $A = S^{-1}BS$, then $S: V_{\lambda}^A \to V_{\lambda}^B$ is an isomorphism for each e-value λ . A is diagonalizable iff it is similar to a diagonal matrix.
 - (f) (The nondiagonalizable case.) Generalized e-spaces $V_{\lambda}^{(\infty)} = \bigcup_k \operatorname{Nul}(A \lambda I)^k$.

 - (g) The algebraic multiplicity of λ is dim $(V_{\lambda}^{(\infty)})$. (h) If $T: V \to V$ is defined over \mathbb{C} and V is f.g., then V is the direct sum of its generalized e-spaces.
 - (i) Jordan block, Jordan canonical form. Eigenchains in $V_{\lambda}^{(\infty)}$ yield JCF. Every transformation defined over \mathbb{C} is similar to a matrix in JCF, and the JCF is unique up to a permutation of Jordan blocks.
 - (j) The JCF of A can be determined indirectly from the numbers 'nullity $(A \lambda I)^k$ ' for all λ and k.
 - (k) Diagonalization and JCF of T over \mathbb{R} instead of \mathbb{C} : $\overline{V_{\lambda}^{(\infty)}} = V_{\overline{\lambda}}^{(\infty)}$, and $V_{\lambda}^{(\infty)} \oplus V_{\overline{\lambda}}^{(\infty)}$ has a nice real basis consisting of the real and imaginary parts of the vectors in the

 λ -eigenchains in $V_{\lambda}^{(\infty)}$. This choice of basis results in diagonal form or JCF with 2×2 real blocks replacing pairs of 1×1 conjugate complex blocks.

XIV. Orthogonality.

- (a) Dot product. (Defn. Arithmetic facts follow from those of matrices, since $\mathbf{u} \bullet \mathbf{v} = \mathbf{u}^T \mathbf{v}$.)
- (b) Length in \mathbb{R}^n . Unit vector in direction \mathbf{v} is $\mathbf{v}/||\mathbf{v}||$.
- (c) Angle in \mathbb{R}^n via $\mathbf{u} \bullet \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta)$. Cauchy-Schwarz Inequality.
- (d) Orthogonality. Orthogonal complement. $\operatorname{Row}(A)^{\perp} = \operatorname{Nul}(A)$. Algorithm for finding the orthogonal complement of a set of vectors.
- (e) Orthonormal set of vectors. Angle-preserving linear transformations. Orthogonal matrices.
- (f) Approximate solutions to $A\mathbf{x} = \mathbf{b}$ via least squares. Normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$. Fitting curves to data.
- (g) Orthogonal projection onto a vector or subspace. Gram-Schmidt algorithm.

General advice on preparing for a math test.

Be prepared to demonstrate understanding in the following ways.

- (i) Know the definitions of new concepts, and the meanings of the definitions.
- (ii) Know the statements and meanings of the major theorems.
- (iii) Know examples/counterexamples. (The purpose of an example is to illustrate the extent of a definition or theorem. The purpose of a counterexample is to indicate the limits of a definition or theorem.)
- (iv) Know how to perform the different kinds of calculations discussed in class.
- (v) Be prepared to prove elementary statements. (Understanding the proofs done in class is the best preparation for this.)
- (vi) Know how to correct mistakes made on old HW.

Sample Problems.

- (1) Chapter 1–6 supplementary problems (excluding problems marked [M]).
- (2) Let A be a square matrix. Explain why if the columns of A are independent, then the columns of A^2 are independent.
- (3) Show that if $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is independent, then $\{\mathbf{a}, \mathbf{a} + \mathbf{b}, \mathbf{a} + \mathbf{b} + \mathbf{c}\}$ is also independent.
- (4) Explain why if A and B are $n \times n$ matrices satisfying $A\mathbf{x} = B\mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^n$, then A = B.
- (5) Use the definition of "linear transformation" to show that the composition of two linear transformations is a linear transformation.
- (6) Among all $n \times n$ matrices whose entries are all either 0 or 1 what is the maximum possible number of 1's if the matrix is invertible? What is the minimum number of 1's if the matrix is invertible? For which values of n is it possible for the number of 1's to be equal to the number of 0's and still have the matrix invertible?
- (7) Explain why if $S = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ is a subset of \mathbb{R}^n that is linearly independent and spans the space, then k = n.

- (8) Which matrices commute with $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$? (Hint: set up a linear system.)
- (9) Explain why the set of columns of an $n \times n$ invertible matrix spans \mathbb{R}^n . Then explain why this set of columns is independent.
- (10) Explain why every $n \times n$ matrix M is expressible in exactly one way as a sum M = S + A where S is symmetric and A is antisymmetric.
- (11) Show that if A is invertible, then A has at most one LU factorization.
- (12) Give an example of a square matrix with no LU factorization.
- (13) Computational problems:

 - (b) Find bases for the null space, row space and column space of the 3×3 matrix whose entries are all 1. What are the dimensions of these spaces?
 - (c) Put the numbers $1, 2, \ldots, 9$ into a 3×3 matrix in order. What is the determinant?

(d) Find a change of basis matrix from $\mathcal{B} = \left(\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right)$ to

$$\mathcal{C} = \left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right).$$

(e) Find the characteristic equation, e-values, and e-spaces of $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. Find a matrix S that conjugates A into diagonal form.

(f) Find a basis for
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}^{\perp}$$
.

- (14) Can any of the following exist? (If so, give an example, if not give a reason.)
 - (a) A vector space with an empty basis.
 - (b) A matrix of rank zero.
 - (c) A matrix with no determinant.
 - (d) A matrix with a zero dimensional eigenspace.
 - (e) An invertible matrix whose row sums are all zero.
 - (f) A real matrix whose null space equals its column space.
 - (g) A matrix A such that $\operatorname{nullity}(A) = 1$ and $\operatorname{nullity}(A^2) = 3$.
 - (h) A matrix where the dimension of the row space is greater than the dimension of the column space.
 - (i) A real number that does not arise as the determinant of a real matrix.
 - (j) A vector space with no subspaces.
 - (k) An isomorphism between vector spaces of different dimensions.
 - (1) A matrix whose row space is isomorphic to its column space.
 - (m) A matrix whose characteristic polynomial is $\lambda^2 + \lambda + 1$.

- 6
- (n) An eigenvalue whose geometric multiplicity exceeds its algebraic multiplicity.
- (o) A real 10×10 matrix with only one eigenvector.
- (p) A matrix equal to its adjugate.
- (q) A left stochastic matrix that is not right stochastic.
- (r) Conjugate matrices of different ranks.
- (s) Conjugate matrices that are not similar.
- (t) A matrix that is diagonalizable over \mathbb{C} but not diagonalizable over \mathbb{R} .
- (u) An orthogonal basis for \mathbb{R}^3 that is not orthonormal.
- (v) A nondiagonalizable complex matrix.
- (w) An orthogonal matrix with determinant zero.
- (x) A 3×3 orthogonal matrix with no zero entries.
- (y) Subspaces U and W such that $U + W \neq U \oplus W$.
- (z) A real vector that is orthogonal to itself.
- (15) Give the dimensions of the following real vector spaces.
 - (a) The space of real polynomials p(t) of degree at most 3 which satisfy p(1) = p(-1) = 0.
 - (b) The space of 3×3 upper triangular real matrices.
 - (c) The space of twice continuously differentiable functions y = f(x) satisfying y'' = 0.
- (16) How would you solve the following problem? Suppose that V has basis $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ and U is a subspace of V with basis $(\mathbf{u}_1, \ldots, \mathbf{u}_m)$. How do you find a basis for V whose first m vectors form a basis for U?
- (17) Suppose that you are given bases \mathcal{B} and \mathcal{C} for subspaces U and W of a space V. How would you find a basis for U + W? How would you find a basis for $U \cap W$? (Hint: in both cases, you should apply Gaussian Elimination to the matrix $[\mathcal{B}|\mathcal{C}]$. How should you use the results?)
- (18) Is there a 3×3 matrix whose minors are nonzero and all equal? Is there a 3×3 matrix whose cofactors are nonzero and all equal?
- (19) Let S be a 2×2 invertible matrix. Consider the linear transformation of "conjugation by S":

$$T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R}): A \mapsto S^{-1}AS.$$

Show that if λ is an e-value of T, then so is λ^k for any k. Show that 0 is not an e-value of T. Explain why the e-values of T can only be +1 or -1. Show that +1 occurs as an e-value with multiplicity at least 2.

- (20) What is the characteristic polynomial for the $n \times n$ matrix whose entries are all 1?
- (21) Show that $\dim(U+W) = \dim(U) + \dim(W) \dim(U \cap W)$. (Solution 1 hint: choose a basis for $U \cap W$ and extend it in different ways to bases for both U and W. Show that all the vectors together form a basis for U + W.) (Solution 2 hint: let \mathcal{B} and \mathcal{C} be bases for U and W. Apply the rank+nullity theorem to the matrix $[\mathcal{B}|\mathcal{C}]$.)
- (22) The points $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$, and $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ are the vertices of a regular tetrahedron. Find the lengths of the sides and the angles formed by adjacent faces.

- (23) Find the least squares curve of the form $y = ax^2 + bx + c$ that best fits the data points (-2, 2), (-1, 1), (0, 0), (1, 1), (2, 2).
- (24) Show that if V is finite dimensional and U is a subspace, then $V = U \oplus U^{\perp}$.
- (25) Show that $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$.
- (26) Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^3 spanned

by
$$\begin{bmatrix} 0\\4\\2 \end{bmatrix}$$
 and $\begin{bmatrix} 5\\6\\-7 \end{bmatrix}$.