
Math 3130, Introduction to Linear Algebra

Catalog description: Examines basic properties of systems of linear equations, vector spaces, linear
independence, dimension, linear transformations, matrices, determinants, eigenvalues, and eigen-
vectors. Prereq., MATH 2300 or APPM 1360.1 Credit not granted for this course and APPM
3310.2

Math 3130, Introduction to Linear Algebra, is a course designed to prepare students for a wide
range of courses in mathematics, physics, economics, computer science and engineering. The course
is taught with a mixture of theory and application. Students are expected to leave the course able
to solve problems using linear algebra, to know a number of applications of linear algebra, to be
able to follow complex logical arguments and to develop simple logical arguments.

The chief theoretical topics and their objectives are:

(1) Systems of linear equations.
(a) Set up and solve a system of linear equations using Gaussian elimination.
(b) Be able to distinguish between consistent and inconsistent systems.
(c) Relate the solutions of a system to the solutions of the associated homogeneous system.
(d) Rewrite a linear system as a matrix equation or a vector equation.

(2) Matrices and matrix algebra
(a) Be able to identity laws of matrix algebra, and to give examples of matrices satisfying

AB 6= BA.
(b) Explain the laws of transpose. Define symmetric and antisymmetric matrices.
(c) Explain left, right and 2-sided invertibility. Be able to link each invertibility property

for A to the corresponding solvability property of the system Ax = b.
(d) Define elementary matrices and explain their role in Gaussian elimination.
(e) Define (block) diagonal and (block) triangular matrices.

(3) Vector spaces
(a) Explain the defining properties of vectors spaces and give examples of vector spaces.
(b) Explain the geometric interpretation of the vector space operations in Rn.
(c) Define the four fundamental subspaces associated with a matrix.
(d) Define linear combination, linearly independent, span, basis, and dimension.
(e) Explain how to write a vector in coordinates relative to a basis.
(f) Compute the dimension of any of the four fundamental subspaces.
(g) Define rank and nullity and prove the rank+nullity theorem.

(4) Linear transformations
(a) Define linear transformation.
(b) Explain why any linear transformation between finitely generated spaces has a matrix

representation.
(c) Compute the matrix of a transformation relative to specified input and output bases.
(d) Define image and kernel, and use these words in definitions of onto and 1-1 trans-

formations. Explain the link between (image, kernel) and (rank, nullity). Define
isomorphism.
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(e) Explain why any finite dimensional real vector space is isomorphic to Rn for some n.
(5) Determinant

(a) Explain the connection between the determinant and area in R2 and volume in R3.
(b) Describe the cofactor expansion of the determinant and be able to use it to compute

some determinants.
(c) Be able to compute the inverse of a matrix via the determinant formula for inverse.

(6) Eigenvalues and eigenvectors
(a) State the definitions of eigenvalue, eigenvector, and eigenspace.
(b) Given a square matrix, find its characteristic polynomial, eigenvalues and bases for its

eigenspaces.
(c) State necessary and sufficient conditions for a matrix to be diagonalizable.
(d) Find a diagonalizing matrix, if one exists.
(e) Define similarity, and explain how the characteristic polynomial, eigenvalues and

eigenspaces of similar matrices are related.
(f) Explain how to raise a diagonalizable matrix to a large power, and how to use this to

solve linear recurrences.
(7) Orthogonality

(a) Explain the concept of orthogonality of vectors and subspaces.
(b) Explain the orthogonality relations among the four fundamental subspaces.
(c) Given u and v, compute ‖u‖, the unit vector in the direction of v, the angle between

u and v.
(d) State the Cauchy-Schwarz Theorem.
(e) Construct a basis for the orthogonal complement of a set of vectors in Rn.
(f) Given a least-squares problem, derive the normal equations and solve. Be able to apply

this to fit a curve to data.
(g) Be able to apply the Gram-Schmidt process to construct an orthonormal set of vectors.
(h) Given a vector u and a subspace W of Rn, compute the orthogonal projection of u

onto W .
(i) Be able to define orthogonal transformations and to give examples.

There are many types of applications that could be covered in a semester course. Fitting
polynomial curves to data, network flow and electrical network problems are good for illustrating
the practicality of linear systems, and for gaining practice with Gaussian elimination. Discrete
dynamical systems and Markov chains, where one might look for a steady state vector, could be
used to lead into a discussion of eigenvectors. Linear recurrence relations illustrate the usefulness
of diagonalizing. Any application can be used to illustrate the method of least squares.


