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Modular lattices

A lattice is nonmodular if it has a sublattice isomorphic to the pentagon:
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Else is modular. Modularity is expressed by the law

x ∧ (y ∨ (x ∧ z)) ≈ (x ∧ y) ∨ (x ∧ z).

The modular law was discovered by Richard Dedekind as a law satisfied by
the subgroup lattice of 〈C; +,−, 0〉. He also proved that any law in at most 3
variables satisfied by the subgroup lattice of C is a consequence of the
modular law.
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Congruence modularity

A class of algebras is congruence modular if all congruence lattices are
modular.

Examples. Any class of algebras realizing the laws of groups or lattices is
congruence modular: groups, rings, modules, lattices, Boolean algebras, etc.

Starting in the 1970’s, commutator theory was developed for congruence
modular varieties. This theory has been applied to problems about counting
models, decidability problems, the study of categorical algebraic properties of
varieties, finite basis questions, equational completeness, and more.
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Day’s Theorem

Theorem
A variety V is congruence modular iff it realizes the following identities for
some n:

(a) m0(x, u, v, y) ≈ x and mn(x, u, v, y) ≈ y;

(b) mi(x, u, u, x) ≈ x for all i;

(c) mi(x, u, u, y) ≈ mi+1(x, u, u, y) for odd i; and

(d) mi(x, x, y, y) ≈ mi+1(x, x, y, y) for even i.

For groups, can take

m0(x, u, v, y) = x, m1(x, u, v, y) = xv−1ux−1y, m2(x, u, v, y) = y.
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Gumm’s Theorem

Theorem
A variety V is congruence modular iff it realizes the following identities for
some n:

(a) q1(x, z, z) ≈ x and p(x, x, z) ≈ z;

(b) qi(x, z, x) ≈ x for all i;

(c) qi(x, x, z) ≈ qi+1(x, x, z) for odd i; and

(d) qi(x, z, z) ≈ qi+1(x, z, z) for even i; and

(e) qn(x, z, z) ≈ p(x, z, z).

For groups, can take

q1(x, y, z) = x, p(x, y, z) = xy−1z
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Modularity versus p-modularity

A lattice FAILS to be p-modular if it has a sublattice isomorphic to this one:
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qq
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��@@x zy

Else IS p-modular. p-modularity is expressed by

(x ∨ (y ∧ z)) ∧ (z ∨ (y ∧ x)) ≈ (z ∧ (x ∨ (y ∧ z))) ∨ (x ∧ (z ∨ (y ∧ x))).
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Gedeonova’s Theorem

Theorem
A variety V is congruence p-modular iff it realizes the following identities for
some n:

(a) g0(x, s, t, u, v, y) ≈ x and gn(x, s, t, u, v, y) ≈ y;

(b) gi(x, x, y, y, x, x) ≈ gi(x, y, x, x, y, x) ≈ x for all i;

(c) gi(x, s, x, y, s, y) ≈ gi+1(x, s, x, y, s, y) for odd i; and

(d) gi(x, x, s, s, y, y) ≈ gi+1(x, x, s, s, y, y) for even i.

Question. Is congruence p-modularity equivalent to congruence modularity
for varieties? Yes. (Alan Day.)
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The Congruence Modularity Conjecture

If A = 〈A;F〉 is an algebra, then a topology on A is compatible if all
operations of A are continuous with respect to this topology.

If V is a variety, a topological algebra associated to V is any algebra of V
equipped with a compatible topology.

The Congruence Modularity Conjecture. A variety V has the property that
all of its topological algebras satisfy T0 ⇒ T2 iff

(1) all of its topological algebras satisfy T0 ⇒ T1 and

(2) V is congruence modular.

“If” proved by Kearnes & Sequeira; “only if” still open.
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Bentz’s question

Bentz suggested a possible counterexample to “only if”. He showed that if
you define a variety with identities guaranteeing T0 ⇒ T1 and add to those
x ≈ q1(x, y, y), q1(x, x, y) ≈ q2(x, x, y), q2(x, y, x) ≈ x, q2(x, y, y) ≈ p(x, y, y),
and p(x, x, y) ≈ y, then topological algebras must satisfy T0 ⇒ T2. These are
the Gumm identities for congruence modularity for n = 2 minus the Gumm
identity q1(x, y, x) ≈ x.

Question. Do the Gumm identities for n = 2 imply congruence modularity if
you delete the Gumm identity q1(x, y, x) ≈ x?

Yes. Any variety realizing such identities also realizes Gumm identities for
n = 30. (Kearnes & Sequeira)
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Cube terms

If Σ |= F(y, z̄) ≈ x where the variables xyz̄ are not necessarily distinct, except
that x 6= y, then call F weakly independent of its first place relative to Σ.

A cube term for a variety V is a term C(x1, . . . , xn) such that C is weakly
independent of all places relative to Eq(V).

Berman, Idziak, Markovic, McKenzie, Valeriote and Willard proved that any
variety with a cube term is congruence modular. The proof is a difficult
analysis spanning 5 1/2 journal pages.
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Independence versus weak independence

Let Σ be a set of identities.

If Σ |= F(x, x, . . . , x) ≈ x for each function symbol F appearing in Σ, then
call Σ idempotent.

If Σ |= F(x, z̄) ≈ F(y, z̄) where all variables in the string xyz̄ are distinct, then
call F independent of its first place.

Note: If Σ is idempotent and F is independent of its first place, then

Σ |= F(y, x, . . . , x) ≈ F(x, x, . . . , x) ≈ x,

so F is weakly independent of its first place.
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The derivative of a set of identities

Let Σ be an idempotent set of identities. LetW be the set of pairs (F, i),
where F is a function symbol in Σ and i is a place of F, such that Σ proves F
is weakly independent of its ith place.

The derivative of Σ is the set Σ′ obtained from Σ by adding identities
expressing that F is independent of its ith place for each (F, i) ∈ W .

Example. If Σ = {F(x, y, y) ≈ x}, then

Σ′ = {F(x, y, y) ≈ x, F(x, y, z) ≈ F(x, y′, z), F(x, y, z) ≈ F(x, y, z′)}

where xyy′zz′ are all distinct.
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Main theorem

Theorem
A variety V is congruence modular iff it realizes some set Σ of idempotent
identities where Σ′ is inconsistent.

Easy direction: take Σ to be a set of Day identities.

From identity (b), Σ |= mi(x, y, y, x) ≈ x, infer Σ |= mi(x, x, x, x) ≈ x, so Σ is
a set of idempotent identities. Also infer that each mi is weakly independent
of its middle places.

From identities (a), (c) and (d), infer

Σ′ |= x
(a)
≈ m0(x, ∗, ∗, y)

(d)
≈ m1(x, ∗, ∗, y)

(c)
≈ · · ·

(?)
≈ mn(x, ∗, ∗, y)

(a)
≈ y.
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Application I. Gedeonova’s problem.

(a) g0(x, s, t, u, v, y) ≈ x and gn(x, s, t, u, v, y) ≈ y;

(b) gi(x, x, y, y, x, x) ≈ gi(x, y, x, x, y, x) ≈ x for all i;

(c) gi(x, s, x, y, s, y) ≈ gi+1(x, s, x, y, s, y) for odd i; and

(d) gi(x, x, s, s, y, y) ≈ gi+1(x, x, s, s, y, y) for even i.

From identity (b) infer that (i) Σ is idempotent and (ii) each gi is weakly
independent of its four middle places.

From identities (a), (c) and (d), infer

Σ′ |= x
(a)
≈ g0(x, ∗, ∗, ∗, ∗, y)

(d)
≈ g1(x, ∗, ∗, ∗, ∗, y)

(c)
≈ · · ·

(?)
≈ gn(x, ∗, ∗, ∗, ∗, y)

(a)
≈ y.
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Application II. Bentz’s question.

(a) q1(x, z, z) ≈ x and p(x, x, z) ≈ z;

(b) qi(x, z, x) ≈ x for all i 6= 1;

(c) qi(x, x, z) ≈ qi+1(x, x, z) for odd i; and

(d) qi(x, z, z) ≈ qi+1(x, z, z) for even i; and

(e) qn(x, z, z) ≈ p(x, z, z).

From identities (a) and (b) infer that Σ is idempotent. From (b) infer that each
qi is weakly independent of its middle place, except possibly q1. From (a)
infer this for q1 and for p.

Altogether,

Σ′ |= x ≈ q1(x, ∗, z) ≈ q2(x, ∗, z) ≈ · · · ≈ qn(x, ∗, z) ≈ p(x, ∗, z) ≈ z.

Note: This shows that Gumm’s identities are slightly redundant.
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Application III. Cube terms.

Recall: C(x1, . . . , xn) is a cube term for V if C is weakly independent of all
places relative to Eq(V).
Let Σ be a set of identities of V asserting weak independence for each place
of C.
Σ is an idempotent set of identities realized in V , which asserts that C is
weakly independent of all places.
C is fully independent of all places relative to Σ′, so

Σ′ |= x ≈ C(x, x, . . . , x) ≈ C(y, y, . . . , y) ≈ y.
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Postscript

After the talk, Walter Taylor wrote to me to say that George McNulty proved
that “there is no algorithm that correctly states, given a finite set of equations,
whether the variety defined by that set is congruence-modular”.

Walter adds “this appears in Theorem 3.15 of G. McNulty, PhD Thesis,
Berkeley, 1972”.

(This does not contradict anything in the talk.)

T. Dent, K. Kearnes, Á. Szendrei (2/28/11) An Easy Test For Congruence Modularity CU Logic Seminar 17 / 17



Postscript

After the talk, Walter Taylor wrote to me to say that George McNulty proved
that “there is no algorithm that correctly states, given a finite set of equations,
whether the variety defined by that set is congruence-modular”.

Walter adds “this appears in Theorem 3.15 of G. McNulty, PhD Thesis,
Berkeley, 1972”.

(This does not contradict anything in the talk.)

T. Dent, K. Kearnes, Á. Szendrei (2/28/11) An Easy Test For Congruence Modularity CU Logic Seminar 17 / 17



Postscript

After the talk, Walter Taylor wrote to me to say that George McNulty proved
that “there is no algorithm that correctly states, given a finite set of equations,
whether the variety defined by that set is congruence-modular”.

Walter adds “this appears in Theorem 3.15 of G. McNulty, PhD Thesis,
Berkeley, 1972”.

(This does not contradict anything in the talk.)

T. Dent, K. Kearnes, Á. Szendrei (2/28/11) An Easy Test For Congruence Modularity CU Logic Seminar 17 / 17


