Imaginaries

Let L be a first-order language and A an L-structure. We define an expansion of L to a
new language Liq. One can view this expansion as the usual first-order equivalent of an
expansion of L to a certain many-sorted language; more on this below.

Let Eq be the set of all triples e = (¢, Z, ) such that ¢ is a formula of L, T and 7 are
disjoint sequences of distinct variables of the same length, every free variable of ¢ is in one
of these lists, and {(@,b) : A = (@, b)} is an equivalence relation on some nonempty set 0.
The equivalence class of a tuple @ is denoted by a/e. If e € Eq, we write e = (6, ¢, y°).
The common length of x¢ and y€ is denoted by len(e). A special role is played by the
member (z = y,x,y) of Eq; we denote it by i.

The new non-logical symbols of LY are as follows:

(1) For each e € Eq, a 1-ary relation symbol P,.
(2) For each e € Eq, a function symbol %, of rank len(E).

These symbols P, act as the translations from a many-sorted expansion of L. As part of
this translation, we also fix an element a € A and let u = (a/i,1). Our expansion depends
on a, but in an inconsequential way, since u is used as a value of function symbols when
we are not interested in what happens under its arguments.

Now we define an L®-structure A°? as follows. Its universe is the set of all pairs
(@/e,e) such that e € Eq and @ € J.. For any e € Eq, the function f, : 9. — A®? is
defined by @ — (a/e,e). Let I, = {(a/e,e) : a € 0.}. So fe: 0. — I.. Note that 0, = A,
and fi(a) = (a/i,i) for any a € A. Thus f; is a one-one function. The denotations of the
symbols of L! are determined as follows.

(1) If ¢ is an individual constant of L, then ¢A™ = fi(c?).

(2) If R is an m-ary relation symbol of L, then
RA™ = {(fioa:a e R4}

(3) If F is an m-ary function symbol of L, then

FA™(a) = { fi(FA(D)) ifa= fiob,

U if there is no such b.

(4) PA" = 1,.
(5) FA @) = { fe(d) ifa= fi(b),
U otherwise.

Lemma 1. A is isomorphic to a relativized reduct of A°1. Namely RAeq s closed under
each operation FA™ for F a function symbol of L, and if we let B = (PiAeq,FB,RB)
for F and R function and relation symbols of L, with FB the restriction of FA™ to the
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appropriate power of B and RP the intersection of RA™ with the appropriate power of B,
then f; is an isomorphism from A onto B. ]

Now let

B = ({n} x 2((A°)")).

ncw

For any F C E and n € w\1 let F™ = {R C (A°H)" : (n,R) € F}.
For positive integers m,n, a subset f of (A°1)™*" is an (m,n)-function iff for all
@ € (A°9)™ there is at most one b € (A°9)™ such that @b € f. We let f be the associated

actual function from a subset of (A°1)™ into (A°?)™. Conversely, if g is a function from
X C (A°Y)™ into (A°Y)", we define

g={a"b:ac X and b= g(a)}.
Thus ¢ is then a (m,n)-function. Note that ~ and ~ are inverses of each other.
For m, n positive integers, m;"" is the (m + n, m)-function defined by

" (@) =a | m.

Similarly, m5"" is the (m 4+ n, n)-function defined by

7o (@) = (Amy - -+, Gmpn—1)-

A universe over A is a subset F' of E with the following properties:

(1) For each positive integer m, (A°®)™ ¢ F(™) and F(™) is closed under union, intersec-
tion, and complementation with respect to (A1)™.

(2) (a) f Re F™) and S € F™, then {a"b:a€ Rand be S} € Fim+n),
(b) If m and n are positive integers, then 7" € FZm+n) and 77" ¢ F@ntm),
(c) If m and n are positive integers and R € F+")  then #7""[R] € F(™) and
7y " [R] € F(™.
(d) Ay ¥ {(a,a) 1 a € A9} € F®),
(3) If m is a positive integer and v € R € F("™) then {v} € F(™).
(4) If e € Eq, then {(a/e,e) : @ € 8.} € FM and {(fi0a)"((@/e,e)) : @ € 9,} € Flen(e)+1),

Lemma 2. If F is a universe over A and f € F") is an (m, n)-function, then dmn(f) €
F™) and mg(f) € F™.

Proof. Note that #7""[f] € F("™) and

AIf = (B 3a e f [ @) =B}



Also, we have 735""[f] € F(™), and

#n(f] = {b:Ja e f[#5"(@) =]}
= {5:366f[<am,---7am+n—1> :E}}
= rng(f). -

For each positive integer n, let A,, = {(a,a,...,a) : a € A®1}.
———
n a's

Lemma 3. Let A be an L-structure. For each positive integer m let

B™ = {{@ e (A°N)™ : A% = p[a]} : ¢ is a formula

with free variables among vy, ..., Um—1}.

Then F % (J=°_, ({m} x B™) is a universe.

m=1
Proof. (1) is clear. For (2)(a), let R = {@ € (A°9)™ : A°4 |= p[a]} and S = {b €
(A A% |= 4p[b]}. With T and 7 disjoint sequences of distinct variables of lengths m,n
respectively, clear ¢(Z) A ¢ (7) is the formula needed for (2)(a).
For (2)(b), the following formulas work, where 7, ¥, Z, W are pairwise disjoint sequences
of distinct variables of lengths m, n, m, n respectively:

/\ Ty = Ziy
<m

/\ Yi = W;.
i<n
The first formula is considered as ¢(T,,z), defining 7", and the second formula is
considered as ¥(T, 7y, w), defining 75"
For (2)(c), let R be defined by ¢(Z, 7). Then the following formulas define 77" [R] €
F) and #3""[R] € F" respectively: 35p(T,7) and ITp(T, 7).
A, is defined by = = y.
{v} is defined by A,_,, ; = v; (a definition with parameters).
{(@/e,e) :a € 0.} is defined by P.(x).
Finally, {(fica)™((a/e,e)) : @ € 0.} is defined by

N Pil@i) Awn = Zo(T). O
<m

Since a universe has been defined as a subset F' of E containing certain sets (like (1, A°%)
and As), and closed under certain partial operations (like (n, R) — (n, (A®1)™) for R C
(A°)™ and (m+n, R) — (m,7]""[R]) for R C (A®1)™+™) it follows that any subset F' of
FE is contained in a unique unverse over A.

Lemma 4. If F is a universe, then A, € F(") for every positive integer n.
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Proof. For n = 1 this is true since A°t € F(). For n = 2 it is true by (2)(d).
Now assume that n > 2 and it is true for n. Then applying (2)(a) to A, and A®? we

def _
get E =< {(a,a,...,a,b) : a,b € A9} € FHD Now 7" ' = {(ag, a1, .., an_1,a0) :
n a’'s
g, ..., an_1 € A%}, 50 Apyqg = ENmy" e Fint), O

Lemma 5. If F is a universe, f is an (m,n)-function in F"™+t")  and M € F(™) | then

FIME e fiaime M}

is an (m,n)-function and is also in Fm+™),

Proof. By (1) and (2)(a), N % {@ € (4°)m+") . G | m € M} is in F(m+")_ Clearly
FIM=fnN. 0

Lemma 6. If F is a universe, f is an (m,n)-function in F™™)  and ) £ M € F™)
with M C dmn(f), then f[M] € F™),

Proof. By Lemmas 2 and 5. L
Lemma 7. If F is a universe, f is an (m, n)-function, and P € F™) | then fﬁl[P] e Fim),
Proof. By (1) and (2)(a), @ ¥ {@ € (A°)™ ™) . (ap,... amin_1) € P} is in
Fm4n)  Clearly f~'[P] € F™ = #7""[f N Q). O

Now for each positive integer m and each i < m let 3" * s (A°)™ — A° be defined by
ﬁ?’z(ao, ceey am_l) = Q;.

Lemma 8. For F a universe, my"" € F(m+1),

Proof. Fori=0and m =1, 75"" = Ay. Fori =0 and m > 1, n§"" = ;"™ ", For
m >1and i =m — 1, by (1) and (2)(a),(d) applied to (4°3)™~ and A, we have 75" =
{{ag, .- am—1,am—-1) 1@ € (A°1)™} € Fm*+Y_ Finally, for m > 2 and 0 < i < m — 1, by
(1) and (2)(a) applied to (A°®)? and 75" “° we have

ﬂ_gn,i = {<CLO, ey Qi—1, Gy e .,am,l,az) ra € (Aeq)m} S F(m+1). L]

Now suppose that m is a positive integer and ) # M C m. Write M = {ig,...,i,_1} with
io < - <in_1. Then we define 77" to be the (m,n)-function such that

FM @) = e,

Lemma 9. If F' is a universe over A, then WT’M c Fim+n),

Proof. We prove this by induction on n. For n = 1 it is true by Lemma 8. Now
assume it for n, and suppose that M C m with |[M| =n+ 1, say M = {ig,...,i,} with
ig < -+ < in. Let N ={ig,...,in_1}. So WT’N e F(mtn) by the inductive hypothesis.
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Then #5" 1 [7x7"N] e Fm+n+1) by Lemma 6, and for @ € (A°)™, b € (A°Y)", and
c e A1,

a"b (¢) e agtin N it @b e Y and ¢ = a;,
iff b= (ai,...,a;,_,)and c = a;,

-

iff b (c) = (aiy,...,ai,);

S "n. 7N 7M 3
Thus A7 27N = 27 M  ag desired. 0
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