
Imaginaries

Let L be a first-order language and A an L-structure. We define an expansion of L to a
new language LEq

A . One can view this expansion as the usual first-order equivalent of an
expansion of L to a certain many-sorted language; more on this below.

Let Eq be the set of all triples e = (ϕ, x, y) such that ϕ is a formula of L, x and y are
disjoint sequences of distinct variables of the same length, every free variable of ϕ is in one
of these lists, and {(a, b) : A |= ϕ(a, b)} is an equivalence relation on some nonempty set ∂e.
The equivalence class of a tuple a is denoted by a/e. If e ∈ Eq, we write e = (θe, xe, ye).
The common length of xe and ye is denoted by len(e). A special role is played by the
member (x = y, x, y) of Eq; we denote it by i.

The new non-logical symbols of Leq are as follows:

(1) For each e ∈ Eq, a 1-ary relation symbol Pe.

(2) For each e ∈ Eq, a function symbol Fe of rank len(E).

These symbols Pe act as the translations from a many-sorted expansion of L. As part of
this translation, we also fix an element a ∈ A and let u = (a/i, i). Our expansion depends
on a, but in an inconsequential way, since u is used as a value of function symbols when
we are not interested in what happens under its arguments.

Now we define an Leq-structure Aeq as follows. Its universe is the set of all pairs
(a/e, e) such that e ∈ Eq and a ∈ ∂e. For any e ∈ Eq, the function fe : ∂e → Aeq is
defined by a 7→ (a/e, e). Let Ie = {(a/e, e) : a ∈ ∂e}. So fe : ∂e → Ie. Note that ∂i = A,
and fi(a) = (a/i, i) for any a ∈ A. Thus fi is a one-one function. The denotations of the
symbols of Leq

A are determined as follows.

(1) If c is an individual constant of L, then cAeq

= fi(c
A).

(2) If R is an m-ary relation symbol of L, then

RAeq

= {(fi ◦ a : a ∈ RA}.

(3) If F is an m-ary function symbol of L, then

FAeq

(a) =

{

fi(F
A(b)) if a = fi ◦ b,

u if there is no such b.

(4) PAeq

e = Ie.

(5) F
Aeq

e (a) =

{

fe(b) if a = fi(b),
u otherwise.

Lemma 1. A is isomorphic to a relativized reduct of Aeq. Namely PAeq

i
is closed under

each operation FAeq

for F a function symbol of L, and if we let B = (PAeq

i
,FB,RB)

for F and R function and relation symbols of L, with FB the restriction of FAeq

to the
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appropriate power of B and RB the intersection of RAeq

with the appropriate power of B,

then fi is an isomorphism from A onto B.

Now let
E =

⋃

n∈ω

({n} × P((Aeq)n)).

For any F ⊆ E and n ∈ ω\1 let F (n) = {R ⊆ (Aeq)n : (n,R) ∈ F}.
For positive integers m,n, a subset f of (Aeq)m+n is an (m,n)-function iff for all

a ∈ (Aeq)m there is at most one b ∈ (Aeq)n such that a⌢b ∈ f . We let f̂ be the associated
actual function from a subset of (Aeq)m into (Aeq)n. Conversely, if g is a function from
X ⊆ (Aeq)m into (Aeq)n, we define

ǧ = {a⌢b : a ∈ X and b = g(a)}.

Thus ǧ is then a (m,n)-function. Note that ˆ and ˇ are inverses of each other.
For m,n positive integers, πm,n

1 is the (m+ n,m)-function defined by

π̌m,n
1 (a) = a ↾ m.

Similarly, πm,n
2 is the (m+ n, n)-function defined by

π̌m,n
2 (a) = 〈am, . . . , am+n−1〉.

A universe over A is a subset F of E with the following properties:

(1) For each positive integer m, (Aeq)m ∈ F (m), and F (m) is closed under union, intersec-
tion, and complementation with respect to (Aeq)m.

(2) (a) If R ∈ F (m) and S ∈ F (n), then {a⌢b : a ∈ R and b ∈ S} ∈ F (m+n).
(b) If m and n are positive integers, then πm,n

1 ∈ F (2m+n) and πm,n
2 ∈ F (2n+m).

(c) If m and n are positive integers and R ∈ F (m+n), then π̂m,n
1 [R] ∈ F (m) and

π̂m,n
2 [R] ∈ F (n).

(d) ∆2
def
= {(a, a) : a ∈ Aeq} ∈ F (2).

(3) If m is a positive integer and v ∈ R ∈ F (m), then {v} ∈ F (m).

(4) If e ∈ Eq, then {(a/e, e) : a ∈ ∂e} ∈ F (1) and {(fi◦a)
⌢〈(a/e, e)〉 : a ∈ ∂e} ∈ F (len(e)+1).

Lemma 2. If F is a universe over A and f ∈ F (m+n) is an (m,n)-function, then dmn(f̂) ∈

F (m) and rng(f̂) ∈ F (n).

Proof. Note that π̂m,n
1 [f ] ∈ F (m), and

π̂m,n
1 [f ] =

{
b : ∃a ∈ f

[
π̂m,n

1 (a) = b
]}

=
{
b : ∃a ∈ f

[
a ↾ m = b

]}

= dmn(f̂).
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Also, we have π̂m,n
2 [f ] ∈ F (n), and

π̂m,n
2 [f ] =

{
b : ∃a ∈ f

[
π̂m,n

2 (a) = b
]}

=
{
b : ∃a ∈ f

[
〈am, . . . , am+n−1〉 = b

]}

= rng(f).

For each positive integer n, let ∆n = {(a, a, . . . , a
︸ ︷︷ ︸

n a′s

) : a ∈ Aeq}.

Lemma 3. Let A be an L-structure. For each positive integer m let

B(m) = {{a ∈ (Aeq)m : Aeq |= ϕ[a]} : ϕ is a formula

with free variables among v0, . . . , vm−1}.

Then F
def
=

⋃
∞

m=1({m} ×B(m)) is a universe.

Proof. (1) is clear. For (2)(a), let R = {a ∈ (Aeq)m : Aeq |= ϕ[a]} and S = {b ∈
(Aeq)n : Aeq |= ψ[b]}. With x and y disjoint sequences of distinct variables of lengths m,n
respectively, clear ϕ(x) ∧ ψ(y) is the formula needed for (2)(a).

For (2)(b), the following formulas work, where x, y, z, w are pairwise disjoint sequences
of distinct variables of lengths m,n,m, n respectively:

∧

i<m

xi = zi;

∧

i<n

yi = wi.

The first formula is considered as ϕ(x, y, z), defining πm,n
1 , and the second formula is

considered as ψ(x, y, w), defining πm,n
2 .

For (2)(c), let R be defined by ϕ(x, y). Then the following formulas define π̂m,n
1 [R] ∈

F (m) and π̂m,n
2 [R] ∈ F (n) respectively: ∃yϕ(x, y) and ∃xϕ(x, y).

∆2 is defined by x = y.
{v} is defined by

∧

i<m xi = vi (a definition with parameters).
{(a/e, e) : a ∈ ∂e} is defined by Pe(x).
Finally, {(fi ◦ a)

⌢〈(a/e, e)〉 : a ∈ ∂e} is defined by

∧

i<m

Pi(xi) ∧ xm = Fe(x).

Since a universe has been defined as a subset F of E containing certain sets (like (1, Aeq)
and ∆2), and closed under certain partial operations (like (n,R) 7→ (n, (Aeq)m) for R ⊆
(Aeq)n and (m+n,R) 7→ (m, π̂m,n

1 [R]) for R ⊆ (Aeq)m+n), it follows that any subset F of
E is contained in a unique unverse over A.

Lemma 4. If F is a universe, then ∆n ∈ F (n) for every positive integer n.
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Proof. For n = 1 this is true since Aeq ∈ F (1). For n = 2 it is true by (2)(d).
Now assume that n ≥ 2 and it is true for n. Then applying (2)(a) to ∆n and Aeq we

get E
def
= {(a, a, . . . , a

︸ ︷︷ ︸

n a′s

, b) : a, b ∈ Aeq} ∈ F (n+1). Now π1,n−1
1 = {(a0, a1, . . . , an−1, a0) :

a0, . . . , an−1 ∈ Aeq}, so ∆n+1 = E ∩ π1,n−1
1 ∈ F (n+1).

Lemma 5. If F is a universe, f is an (m,n)-function in F (m+n), and M ∈ F (m), then

f ↾ M
def
= {a ∈ f : a ↾ m ∈M}

is an (m,n)-function and is also in F (m+n).

Proof. By (1) and (2)(a), N
def
= {a ∈ (Aeq)(m+n) : a ↾ m ∈M} is in F (m+n). Clearly

f ↾ M = f ∩N .

Lemma 6. If F is a universe, f is an (m,n)-function in F (m+n), and ∅ 6= M ∈ F (m)

with M ⊆ dmn(f), then f̂ [M ] ∈ F (n).

Proof. By Lemmas 2 and 5.

Lemma 7. If F is a universe, f is an (m,n)-function, and P ∈ F (n), then f̂−1[P ] ∈ F (m).

Proof. By (1) and (2)(a), Q
def
= {a ∈ (Aeq)(m+n) : 〈am, . . . , am+n−1〉 ∈ P} is in

F (m+n). Clearly f̂−1[P ] ∈ F (m) = π̂m,n
1 [f ∩Q].

Now for each positive integer m and each i < m let πm,i
3 : (Aeq)m → Aeq be defined by

π̂m,i
3 (a0, . . . , am−1) = ai.

Lemma 8. For F a universe, πm,i
3 ∈ F (m+1).

Proof. For i = 0 and m = 1, πm,i
3 = ∆2. For i = 0 and m > 1, πm,i

3 = π1,m−1
1 . For

m > 1 and i = m− 1, by (1) and (2)(a),(d) applied to (Aeq)m−1 and ∆2, we have πm,i
3 =

{〈a0, . . . , am−1, am−1〉 : a ∈ (Aeq)m} ∈ F (m+1). Finally, for m > 2 and 0 < i < m− 1, by
(1) and (2)(a) applied to (Aeq)i and πm−i,0

3 we have

πm,i
3 = {〈a0, . . . , ai−1, ai, . . . , am−1, ai〉 : a ∈ (Aeq)m} ∈ F (m+1).

Now suppose that m is a positive integer and ∅ 6= M ⊆ m. Write M = {i0, . . . , in−1} with

i0 < · · · < in−1. Then we define πm,M
4 to be the (m,n)-function such that

π̂m,M
4 (a) = 〈ai0 , . . . , ain−1

〉.

Lemma 9. If F is a universe over A, then πm,M
4 ∈ F (m+n).

Proof. We prove this by induction on n. For n = 1 it is true by Lemma 8. Now
assume it for n, and suppose that M ⊆ m with |M | = n + 1, say M = {i0, . . . , in} with

i0 < · · · < in. Let N = {i0, . . . , in−1}. So πm,N
4 ∈ F (m+n) by the inductive hypothesis.
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Then π̂m+n,in

3 [πm,N
4 ] ∈ F (m+n+1) by Lemma 6, and for a ∈ (Aeq)m, b ∈ (Aeq)n, and

c ∈ Aeq,

a⌢b
⌢
〈c〉 ∈ π̂m+n,in

3 [πm,N
4 ] iff a⌢b ∈ πm,N

4 and c = ain

iff b = 〈ai0 , . . . , ain−1
〉 and c = ain

iff b
⌢
〈c〉 = 〈ai0 , . . . , ain

〉;

Thus π̂m+n,in

3 [πm,N
4 ] = πm,M

4 , as desired.
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