
Nilpotent Groups of Finite Morley Rank

The main reference for the following is Groups of Finite Morley Rank by
A. Borovik and A. Nesin. Simple Groups of Finite Morley Rank, a book in
preparation by T. Altinel, A. Borovik, and G. Cherlin, refines some of the
ideas in Groups of Finite Morley Rank and serves as a reference for relative
definability.

1 Properties of Nilpotent Groups of FMR

We begin with a simple lemma.

Lemma 1. Let G be a group of FMR and H be a connected subgroup of G.
For all g ∈ G, if [g,H] is finite, then in fact [g,H] = 1.

Proof. The the fibers of the commutator map [g,−] : H −→ [g,H] are the
right cosets of CH(g) in H, so CH(g) has finite index in H. Noting that
CH(g) = H ∩ CG(g) is relatively definable in H, the connectedness of H
implies that CH(g) = H.

Theorem 2. Let G be a nilpotent group of FMR and H a subgroup of G.

(a) If H is infinite and G-normal, then H ∩ Z(G) is infinite.

(b) If |G : H| is infinite and H is definable, then |NG(H) : H| is infinite.

Proof. First assume that H is infinite and G-normal. Choose i minimal such
that A := H ∩ Zi+1(G) is infinite (here we are using that G is nilpotent).
Then A◦ is also infinite. Additionally, A◦ is a connected subgroup of G such
that [G, A◦] ≤ [G, A] ≤ H ∩ Zi(G). The latter is finite, so by Lemma 1,
[G, A◦] = 1. Thus A◦ is an infinite subgroup of H, central in G, so we have
proved part (a).

Now assume |G : H| is infinite and that H is definable in G (but H need no
longer be infinite or G-normal). Let Z = Z◦(G), and note that (a) implies
that Z is infinite. If |Z : H ∩Z| is infinite, then |HZ : H| is infinite as well.
In this case we are done since H ≤ HZ ≤ NG(H). Otherwise, |Z : H ∩Z| is
finite, so the connectedness of Z implies that Z ≤ H. We can now proceed
by induction on the rank of G to get that |NG/Z(H/Z) : H/Z| is infinite.
Now NG/Z(H/Z)/(H/Z) = (NG(H)/Z)/(H/Z) ∼= NG(H)/H.

The last statement follows from the fact that if K is the unique subgroup

containing Z such that K/Z = NG/Z(H/Z) then for k ∈ K, H
k = H implies

that Hk = HZ = H (where the bar denotes passage to the quotient G/Z).
This tells us that K ⊆ NG(H). The reverse inclusion is clear.

We now derive other consequences of Lemma 1 including a description of the
minimal, infinite, definable subgroups of a group of FMR. We are working
to prove the following theorem.



Theorem 3. (Reineke, 1975) In a group of FMR, a minimal, infinite,
definable subgroup A is abelian. In fact, A is divisible or an elementary
abelian p-group.

To prove the second sentence of the theorem, we will need to know about
abelian groups of FMR.

Theorem 4. (Macintyre, 1971) Let G be an abelian group of FMR. Then
G = DC where D = T ×N and

D is definable, characteristic, divisible, and connected.

C is definable, characteristic, and of bounded exponent.

T is the torsion part of D and is divisible.

N is torsion free and divisible.

Further, D∩C is finite, and if G is connected, we can take C to be connected.

Proof. Let G(n) = {gn : g ∈ G}, and set D =
⋂

n∈N G(n) =
⋂

n∈N G(n!).
Then D is a divisible subgroup of G, and by DCC, D = G(n!) for some
n. By a theorem of Baer, stating that in the category of abelian groups
divisible groups are injective, D has a complement in G, call it B. Con-
sidering G/D, we see that B has bounded exponent of at most n!. Set
C = {g ∈ G : gexp(B) = 1}. Because B ≤ C, G = DC. Further, D and
C are characteristic because they are 0-definable, and divisible groups are
connected (they can have no nontrivial, finite quotients and the presence of
any nontrivial subgroup of finite index implies the presence of a nontrivial,
normal subgroup of finite index).

Setting T to be the torsion part of D, it is easily checked that T is divisible.
Again by Baer, T has a complement in D, call it N , which must be torsion
free. As N is a quotient of D, it is also divisible.

Finally, we show that D∩C is finite. It will then follow that if G is connected,
we have G = DC◦ (using that rk G = rk D + rkC◦ − rk (D ∩C◦)). We now
show that for k ∈ N, D has only finitely many elements of order dividing
k (our proof works for any k-divisible, abelian group of FMR). Set Dkm =
{x ∈ D : xkm

= 1}. We want to show Dk is finite. If Dk is trivial, we
are done. Otherwise, let y1 ∈ Dk \ {1}. By the divisibility of D, there
exists a y2 ∈ D such that yk

2 = y1, so y2 ∈ Dk2 \ Dk. Repeating, we see
that (Dkm) is a strictly increasing sequence of definable subgroups. Further,
Dkm+1/Dkm is isomorphic to Dk via the interpretable map xDkm 7→ xkm

.
If Dk is not finite, (rk(Dkm)) is a strictly increasing sequence, which is a
contradiction.

We need two more short lemmas before we reach our goal.

Lemma 5. If G is a group of FMR and H a connected subgroup of G such
that Z(H) is finite, then H/Z(H) is a centerless group.

Proof. We wish to show Z2(H) = Z(H). Let w ∈ Z2(H), so that [w,H] ≤
Z(H). By Lemma 1, [w,H] = 1, so w is central.



Lemma 6. If G is a connected group of FMR such that CG(x) is finite for
all x ∈ G \ {1}, then G = 1.

Proof. If G is finite, the connectedness of G implies that G = 1. By way
of contradiction, assume that G is infinite. We know that G is the disjoint
union of {1} and the nontrivial conjugacy classes of G. However, for all
x ∈ G\{1}, the right coset space G/CG(x) is in interpretable bijection with
xG. Thus rk (xG) = rk (G) − rk (CG(x)) = rk (G). Since G is degree 1, G
must have only one nontrivial conjugacy class. Hence, for any x ∈ G \ {1},
G = xG ∪ {1}. Further, x ∈ CG(x) which is finite, so x has finite order.
Thus every nontrivial element of G has the same finite order, so exp(G) = p
for some prime p.

Now, NG(〈x〉)/CG(x) is a finite group with order dividing |Aut(〈x〉)| = p−1,
but it certainly must also have exponent dividing p (so p divides the order
of NG(〈x〉)/CG(x)). We conclude that NG(〈x〉)/CG(x) is trivial, so NG(〈x〉)
acts trivially on 〈x〉 (this also follows from the fact that the only definable
action of a connected group of FMR on a finite set is the trivial action).
If exp(G) > 2, we contradict the fact that x2 ∈ xG. If exp(G) = 2, G is
abelian, and we contradict the fact that CG(x) is finite.

We are now able to prove the theorem of Reineke that we have been working
towards.

Proof of Theorem 3. We wish to show that Z(A) = A. By the minimality
of A, it is enough to show that Z(A) is infinite. Note that A is connected.
Towards a contradiction, assume Z(A) is finite. By Lemma 5, A := A/Z(A)
is centerless, and (by assumption) A has no proper infinite, definable sub-
groups. Thus for all a ∈ A, we have that CA(a) is finite. Since A is con-
nected, this forces A to be trival, contradicting the fact that A is infinite.
Thus A is abelian.

By the Macintyre’s theorem, A = D∗C where D is divisible, C has bounded
exponent, and both are definable (in A hence in G). Certainly D or C must
be infinite, so by the minimality of A the one that is infinite must equal A. If
A = D, we are done. Otherwise, A has bounded exponent, say exp(A) = n.
Let p be a prime dividing n. Then ϕ : A −→ A : a 7→ ap is an endomorphism
whose image has exponent n/p, so the image is a proper definable subgroup
(of A hence of G). By the minimality of A, the image of ϕ must be finite,
so the kernel of ϕ is infinite (hence equal to A).



2 The Structure of Nilpotent Groups of FMR

Our goal is to prove the following theorem which will come in two pieces.

Theorem 7. (Nesin, 1991) Let G be a nilpotent group of FMR. Then
G = D ∗ C where D = T ×N and

D is definable, characteristic, divisible, and connected.

C is definable, characteristic, and of bounded exponent.

T is the torsion part of D and is divisible and central in G.

N is torsion free.

Further, D ∩ C is central and finite, and if G is connected, we can take C
to be connected.

We begin by showing that we can decompose G as a central product of
a divisible subgroup and a subgroup of bounded exponent. We will later
address the decomposition for D.

Lemma 8. Let G be a nilpotent group of FMR. Then G = D ∗ C where

D is definable, characteristic, divisible, and connected.

C is definable, characteristic, and of bounded exponent.

Further, D ∩ C is central and finite, and if G is connected, we can take C
to be connected.

Proof. We begin by explaining why it is enough to show that G = DB for
D a divisible subgroup and B a subgroup of finite exponent. Note that D
centralizes B (see background). Let n = exp(B). For g ∈ G, we may write
g = db for d ∈ D and b ∈ B, and gn = dnbn = dn (since D centralizes B).
Thus, D = {dn : d ∈ D} = {gn : g ∈ G}, so D is in fact 0-definable and
characteristic. Now set C = {g ∈ G : gn = 1}. It is not clear that C is a
subgroup, but C is 0-definable, hence characteristic, set containing B. To
show C is a subgroup we need only show that C is closed under multiplica-
tion (inversion and 1 are clear). Using our previous observations C = {db ∈
G : d ∈ D, b ∈ B, dn = 1} ⊆ {db ∈ G : d ∈ D, b ∈ B, d is central in G} (see
background). Thus for c1, c2 ∈ C, (c1c2)n = dn

c1d
n
c2(bc1bc2)

n = 1, so C is a
subgroup. Clearly G = DC where D centralizes C, so G = D ∗ C. Finally,
D ∩ C is contained in Tor (D) which we have already mentioned is central
in G. Tor (D) is easily seen to be divisible, so the argument in Theorem 4
(Macintyre’s Theorem) shows that Tor (D) has only finitely many elements
of order dividing n. Hence, D ∩ C is finite. Thus, it suffices to show that
G = DB for D a divisible subgroup and B a subgroup of finite exponent.

Now suppose that the lemma is not true, and let G be a counterexample
of minimal rank and degree. We will show that in fact G = DB for D
a divisible subgroup and B a subgroup of finite exponent, which will be
our contradiction. Now, G is not abelian (by Macintyre’s Theorem). Set
Z = Z◦(G), and (by minimality) write Z = D0C0 with D0 and C0 as in the



lemma with both connected. Note that D0 and C0 are central subgroups of
G and are actually characteristic in G. We now consider two cases.

Case 1: Assume that C0 6= 1. Thus, the connectedness of C0 implies that
C0 is infinite, so rk (G/C0) < rkG. By induction, G/C0 = (D1/C0)∗(C1/C0)
where (D1/C0) and (C1/C0) are as expected. Note that, as C0 is central,
C1 is of bounded exponent and we have the following lattice.

G

D1 C1

D1 ∩ C1

C0

If D1 6= G, then we may write D1 = D2 ∗ C2 for D2 divisible and C2 of
bounded exponent. Then G = D1C1 = D2(C2C1). Since C2C1 is nilpotent
and each factor is of bounded exponent, C2C1 is of bounded exponent (see
background), so we are done with D = D2 and B = C2C1.

Next consider when D1 = G. First note that G/C0 is divisible. We now work
to produce a proper, definable subgroup H of G such that G = HC0 = H∗C0

(noting that C0 is central). For then, by minimality, H = D3 ∗ C3, and
we are done with D = D3 and B = C3C0. Let n = exp(C0), and set
X = {gn : g ∈ G} and H = 〈X〉. Since G/C0 is n-divisible, G = XC0. We
show X is n-divisible. For x = gn in X, write g = yc for y ∈ X and c ∈ C0.
Since C0 is central, x = gn = yncn = yn, so X is n-divisible. Now, H is
nilpotent and H/H ′ is n-divisible, as it is an abelian group generated by
the n divisible set XH ′, so H is n-divisible (see background). Thus H = X
is a 0-definable, characteristic subgroup. As before, H ∩ C0 is contained in
Tor (H) which is central in G. Tor (H) is easily seen to be n-divisible, so
Tor (H) has only finitely many elements of order dividing n. Hence, H ∩C0

is finite. A rank argument shows that rk (H) < rk (G), so H is proper. This
finishes case 1.

Case 2: Assume that C0 = 1. Then D0 is infinite, so rk (G/D0) < rkG.
By induction, G/D0 = (D1/D0)∗ (C1/D0) where (D1/D0) and (C1/D0) are
as expected. Note that, as D0 is central, D1 is divisible and we have the
previous lattice with D0 replacing C0.

If C1 6= G, then we may write C1 = D2 ∗ C2 for D2 divisible and C2 of
bounded exponent. Then G = D1C1 = (D1D2)C1. Since D1D2 is nilpotent
and each factor is divisible, D1D2 is divisible (see background), so we are
done with D = D1D2 and B = C1.



Next consider when C1 = G. This time G/D0 is of bounded exponent. Let
n = exp(G/D0), and set X = {g ∈ G : gn = 1} and B = 〈X〉. We show
G = BD0. Let g ∈ G. Then gn ∈ D0, so the divisibility of D0 implies that
there is a d ∈ D0 such that gn = dn. Because D0 is central, (gd−1)n = 1, so
gd−1 ∈ B. Thus, g = bd for some b ∈ B, so G = BD0. Now, B is nilpotent
and B/B′ is of bounded exponent, as it is an abelian group generated by
XB′, so B is of bounded exponent (see background). Thus, we are done
with D = D0, and this finishes case 2.

Now we address the decomposition for D in Theorem 7.

Lemma 9. Let D be a divisible nilpotent group of FMR, and T = Tor (D).
Then T is a divisible central subgroup of D, and D = T×N for some torsion
free divisible subgroup N .

Proof. See Groups of Finite Morley Rank by A. Borovik and A. Nesin.


