Nilpotent Groups of Finite Morley Rank

The main reference for the following is Groups of Finite Morley Rank by
A. Borovik and A. Nesin. Simple Groups of Finite Morley Rank, a book in
preparation by T. Altinel, A. Borovik, and G. Cherlin, refines some of the
ideas in Groups of Finite Morley Rank and serves as a reference for relative
definability.

1 Properties of Nilpotent Groups of FMR

We begin with a simple lemma.

Lemma 1. Let G be a group of FMR and H be a connected subgroup of G.
For all g € G, if |g, H] is finite, then in fact [g, H] = 1.

Proof. The the fibers of the commutator map [g,—] : H — [g, H| are the
right cosets of Cy(g) in H, so Cy(g) has finite index in H. Noting that
Cu(g) = H N Cg(g) is relatively definable in H, the connectedness of H
implies that Cy(g) = H. O

Theorem 2. Let G be a nilpotent group of FMR and H a subgroup of G.
(a) If H is infinite and G-normal, then H N Z(G) is infinite.
(b) If |G : H| is infinite and H is definable, then |Ng(H) : H| is infinite.

Proof. First assume that H is infinite and G-normal. Choose ¢ minimal such
that A := H N Z;4+1(G) is infinite (here we are using that G is nilpotent).
Then A° is also infinite. Additionally, A° is a connected subgroup of G such
that [G, A°] < [G,A] < H N Z;(G). The latter is finite, so by Lemma 1,
[G, A°] = 1. Thus A° is an infinite subgroup of H, central in G, so we have
proved part (a).

Now assume |G : H| is infinite and that H is definable in G (but H need no
longer be infinite or G-normal). Let Z = Z°(G), and note that (a) implies
that Z is infinite. If |Z : H N Z| is infinite, then |HZ : H| is infinite as well.
In this case we are done since H < HZ < Ng(H). Otherwise, |Z : HNZ] is
finite, so the connectedness of Z implies that Z < H. We can now proceed
by induction on the rank of G to get that |Ng,,(H/Z) : H/Z| is infinite.
Now Ne,z(H/2)/(H/Z) = (Na(H)/Z)/(H/Z) = Na(H)/H.

The last statement follows from the fact that if K is the unique subgroup
containing Z such that K/Z = Ng,z(H/Z) then for k € K, H =H implies
that H* = HZ = H (where the bar denotes passage to the quotient G/Z).
This tells us that K C Ng(H). The reverse inclusion is clear. O

We now derive other consequences of Lemma 1 including a description of the
minimal, infinite, definable subgroups of a group of FMR. We are working
to prove the following theorem.



Theorem 3. (Reineke, 1975) In a group of FMR, a minimal, infinite,
definable subgroup A is abelian. In fact, A is divisible or an elementary
abelian p-group.

To prove the second sentence of the theorem, we will need to know about
abelian groups of FMR.

Theorem 4. (Macintyre, 1971) Let G be an abelian group of FMR. Then
G = DC where D =T x N and

D is definable, characteristic, divisible, and connected.
C' is definable, characteristic, and of bounded exponent.
T is the torsion part of D and is divisible.

N is torsion free and divisible.
Further, DNC' is finite, and if G is connected, we can take C' to be connected.

Proof. Let G(n) = {¢g" : g € G}, and set D = [,y G(n) = (e G(n)).
Then D is a divisible subgroup of G, and by DCC, D = G(n!) for some
n. By a theorem of Baer, stating that in the category of abelian groups
divisible groups are injective, D has a complement in G, call it B. Con-
sidering G/D, we see that B has bounded exponent of at most n!. Set
C={geqG:g™PPB) =1} Because B < C, G = DC. Further, D and
C' are characteristic because they are 0-definable, and divisible groups are
connected (they can have no nontrivial, finite quotients and the presence of
any nontrivial subgroup of finite index implies the presence of a nontrivial,
normal subgroup of finite index).

Setting T" to be the torsion part of D, it is easily checked that T is divisible.
Again by Baer, T has a complement in D, call it /N, which must be torsion
free. As N is a quotient of D, it is also divisible.

Finally, we show that DNC'is finite. It will then follow that if G is connected,
we have G = DC® (using that tkG =1tk D +1kC° —rk (D N C®)). We now
show that for £ € N, D has only finitely many elements of order dividing
k (our proof works for any k-divisible, abelian group of FMR). Set Dym =
{r € D: 2" =1}. We want to show Dy, is finite. If Dy is trivial, we
are done. Otherwise, let y; € Dy \ {1}. By the divisibility of D, there
exists a yo € D such that y§ = y1, 80 y2 € Dp2 \ Di. Repeating, we see
that (Dgm) is a strictly increasing sequence of definable subgroups. Further,
Djm+1/Dym is isomorphic to Dy, via the interpretable map zDym +— 2+,
If Dy, is not finite, (rk(Dym)) is a strictly increasing sequence, which is a
contradiction. O

We need two more short lemmas before we reach our goal.

Lemma 5. If G is a group of FMR and H a connected subgroup of G such
that Z(H) is finite, then H/Z(H) is a centerless group.

Proof. We wish to show Zy(H) = Z(H). Let w € Z3(H), so that [w, H] <
Z(H). By Lemma 1, [w, H] = 1, so w is central. O



Lemma 6. If G is a connected group of FMR such that Cg(x) is finite for
all z € G\ {1}, then G = 1.

Proof. If G is finite, the connectedness of GG implies that G = 1. By way
of contradiction, assume that G is infinite. We know that G is the disjoint
union of {1} and the nontrivial conjugacy classes of G. However, for all
x € G\ {1}, the right coset space G/Cg(x) is in interpretable bijection with
Y. Thus rk (z%) = 1k (G) — tk (Cg(z)) = rk (G). Since G is degree 1, G
must have only one nontrivial conjugacy class. Hence, for any z € G \ {1},
G = 2% U {1}. Further, z € Cg(x) which is finite, so  has finite order.
Thus every nontrivial element of G has the same finite order, so exp(G) = p
for some prime p.

Now, Ng((z))/Cq(x) is a finite group with order dividing |[Aut({x))| = p—1,
but it certainly must also have exponent dividing p (so p divides the order
of Na((z))/Cq(x)). We conclude that Na((z))/Cq(x) is trivial, so Ng((x))
acts trivially on (x) (this also follows from the fact that the only definable
action of a connected group of FMR on a finite set is the trivial action).
If exp(G) > 2, we contradict the fact that 22 € x%. If exp(G) = 2, G is
abelian, and we contradict the fact that Cg(x) is finite. d

We are now able to prove the theorem of Reineke that we have been working
towards.

Proof of Theorem 3. We wish to show that Z(A) = A. By the minimality
of A, it is enough to show that Z(A) is infinite. Note that A is connected.
Towards a contradiction, assume Z(A) is finite. By Lemma 5, A := A/Z(A)
is centerless, and (by assumption) A has no proper infinite, definable sub-
groups. Thus for all @ € A, we have that C;(a) is finite. Since A is con-
nected, this forces A to be trival, contradicting the fact that A is infinite.
Thus A is abelian.

By the Macintyre’s theorem, A = D xC where D is divisible, C' has bounded
exponent, and both are definable (in A hence in G). Certainly D or C' must
be infinite, so by the minimality of A the one that is infinite must equal A. If
A = D, we are done. Otherwise, A has bounded exponent, say exp(A) = n.
Let p be a prime dividing n. Then ¢ : A — A : a — a? is an endomorphism
whose image has exponent n/p, so the image is a proper definable subgroup
(of A hence of G). By the minimality of A, the image of ¢ must be finite,
so the kernel of ¢ is infinite (hence equal to A). O



2 The Structure of Nilpotent Groups of FMR

Our goal is to prove the following theorem which will come in two pieces.

Theorem 7. (Nesin, 1991) Let G be a nilpotent group of FMR. Then
G=DxC where D=T x N and

D is definable, characteristic, divisible, and connected.

C is definable, characteristic, and of bounded exponent.

T is the torsion part of D and is divisible and central in G.
N is torsion free.

Further, D N C is central and finite, and if G is connected, we can take C
to be connected.

We begin by showing that we can decompose G as a central product of
a divisible subgroup and a subgroup of bounded exponent. We will later
address the decomposition for D.

Lemma 8. Let G be a nilpotent group of FMR. Then G = D x C where
D is definable, characteristic, divisible, and connected.
C is definable, characteristic, and of bounded exponent.

Further, D N C' is central and finite, and if G is connected, we can take C
to be connected.

Proof. We begin by explaining why it is enough to show that G = DB for
D a divisible subgroup and B a subgroup of finite exponent. Note that D
centralizes B (see background). Let n = exp(B). For g € G, we may write
g=dbforde D and b € B, and g" = d"b" = d" (since D centralizes B).
Thus, D = {d" : d € D} = {¢" : g € G}, so D is in fact 0-definable and
characteristic. Now set C' = {g € G : ¢" = 1}. It is not clear that C is a
subgroup, but C is 0-definable, hence characteristic, set containing B. To
show C' is a subgroup we need only show that C' is closed under multiplica-
tion (inversion and 1 are clear). Using our previous observations C' = {db €
G:deD,be B,d"=1}C{dbe G:de D,bec B,dis central in G} (see
background). Thus for c1,co € C, (c1c2)" = di, di, (be,be,)” = 1, 50 C'is a
subgroup. Clearly G = DC where D centralizes C, so G = D * C'. Finally,
D N C is contained in Tor (D) which we have already mentioned is central
in G. Tor (D) is easily seen to be divisible, so the argument in Theorem 4
(Macintyre’s Theorem) shows that Tor (D) has only finitely many elements
of order dividing n. Hence, D N C' is finite. Thus, it suffices to show that
G = DB for D a divisible subgroup and B a subgroup of finite exponent.

Now suppose that the lemma is not true, and let G be a counterexample
of minimal rank and degree. We will show that in fact G = DB for D
a divisible subgroup and B a subgroup of finite exponent, which will be
our contradiction. Now, G is not abelian (by Macintyre’s Theorem). Set
Z = Z°(G), and (by minimality) write Z = DyCy with Dy and Cp as in the



lemma with both connected. Note that Dy and Cy are central subgroups of
G and are actually characteristic in G. We now consider two cases.

Case 1: Assume that Cy # 1. Thus, the connectedness of Cjy implies that
Cy is infinite, so rk (G/Cy) < rk G. By induction, G/Cy = (D1/Cy)*(C1/Ch)
where (D1/Cp) and (C1/Cp) are as expected. Note that, as Cp is central,
(1 is of bounded exponent and we have the following lattice.

Co

If Dy # G, then we may write D1 = Dy % Cs for Do divisible and Cs of
bounded exponent. Then G = D1Cy = D2(C2C1). Since CoCY is nilpotent
and each factor is of bounded exponent, C2C is of bounded exponent (see
background), so we are done with D = Dy and B = C5C}.

Next consider when D; = G. First note that G/Cj is divisible. We now work
to produce a proper, definable subgroup H of G such that G = HCy = Hx(C)
(noting that Cj is central). For then, by minimality, H = D3 * C3, and
we are done with D = D3 and B = C3Cy. Let n = exp(Cp), and set
X ={¢":9 € G}and H = (X). Since G/Cy is n-divisible, G = XC. We
show X is n-divisible. For x = ¢" in X, write g = yc for y € X and ¢ € Cj.
Since Cy is central, x = ¢" = y"c" = y”, so X is n-divisible. Now, H is
nilpotent and H/H' is n-divisible, as it is an abelian group generated by
the n divisible set X H', so H is n-divisible (see background). Thus H = X
is a 0-definable, characteristic subgroup. As before, H N Cj is contained in
Tor (H) which is central in G. Tor (H) is easily seen to be n-divisible, so
Tor (H) has only finitely many elements of order dividing n. Hence, H N Cjy
is finite. A rank argument shows that rk (H) < rk (G), so H is proper. This
finishes case 1.

Case 2: Assume that Cy = 1. Then Dy is infinite, so rk (G/Dy) < tkG.
By induction, G/Dy = (D1/Dg) % (C1/Dy) where (D1/Dy) and (C1/Dy) are
as expected. Note that, as Dy is central, D is divisible and we have the
previous lattice with Dy replacing Cj.

If ¢y # G, then we may write C; = Ds x Cy for Dy divisible and Cs of
bounded exponent. Then G = D;C = (D1D2)Cy. Since DDy is nilpotent
and each factor is divisible, DjDs is divisible (see background), so we are
done with D = D1D2 and B = Cl.



Next consider when C; = G. This time G/Dy is of bounded exponent. Let
n = exp(G/Dyp), and set X = {g € G : ¢" = 1} and B = (X). We show
G = BDy. Let g € G. Then g™ € Dy, so the divisibility of Dy implies that
there is a d € Dy such that g" = d". Because Dy is central, (gd~!)" =1, so
gd—' € B. Thus, g = bd for some b € B, so G = BD,. Now, B is nilpotent
and B/B’ is of bounded exponent, as it is an abelian group generated by
XB', so B is of bounded exponent (see background). Thus, we are done
with D = Dg, and this finishes case 2. ]

Now we address the decomposition for D in Theorem 7.

Lemma 9. Let D be a divisible nilpotent group of FMR, and T = Tor (D).
Then T is a divisible central subgroup of D, and D = T X N for some torsion
free divisible subgroup N.

Proof. See Groups of Finite Morley Rank by A. Borovik and A. Nesin. [



