

History of Mathematical Ideas

Quiz 2

Name: _____

You have 10 minutes to complete this quiz. If you have a question raise your hand and remain seated. In order to receive full credit your answer must be **complete**, **legible** and **correct**. Show your work, and give adequate explanations.

(1) Use the Euclidean algorithm to find $\gcd(12, 21)$.

We perform the Euclidean Algorithm:

$$\begin{aligned} 21 &= 1 \cdot 12 + 9 \\ 12 &= 1 \cdot 9 + 3 \\ 9 &= 3 \cdot 3 + 0 \end{aligned}$$

and determine that the last nonzero remainder is 3 ($= \gcd(21, 12)$). (The remainder sequence is $(21, 12, 9, 3)$.)

(2) Express $\gcd(12, 21)$ in the form $12x + 21y$, where x and y are integers.

Using Back Substitution, we find that

$$\begin{aligned} 3 &= 12 - 1 \cdot 9 \\ &= 12 - 1 \cdot (21 - 1 \cdot 12) = 2 \cdot 12 - 1 \cdot 21. \end{aligned}$$

This shows that for $(x, y) = (2, -1)$ we have $12x + 21y = 3 = \gcd(12, 21)$.