HW 1: solution sketches

(1)

Exercise 1.4.2.

In Figure 1.9, denote the height of the triangle by h. The outer right triangle
with sides a, b, c; + co shares an acute angle with each of the two smaller triangles
(one smaller triangle has hypotenuse a and legs h, ¢; while the other smaller triangle
has hypotenuse b and legs h,cy). This is enough to show that all three triangles
are similar to the outer triangle, because it forces corresponding angles to be equal.
Ratios of corresponding sides must be equal, so we get a/c; = (¢1 + ¢2)/a, which may
be rewritten a? = c% + c1c9. A similar calculation with the other smaller triangle
yields b = 2 + ¢;co. Adding these yields a? +b? = 2 +2cic3 + 2 = (¢ +¢3)? = 2.

True or False? Every integer n > 2 occurs in some Pythagorean Triple. (Justify your
answer. )

TRUE.

Every primitive Pythagorean Triple has the form (a,b,c) = (p* — ¢%, 2pq, p* + ¢*)
where p > ¢ > 0, ged(p, q) = 1 and p and ¢ have opposite parity (meaning that one
is even and the other is odd). Moreover, any triple of the form (p* — ¢2, 2pq, p* + ¢°)
with p > ¢ > 0is a Pythagorean Triple, even if ged(p, ¢) # 1 or p and ¢ have the same
parity. (This statement means only that each term in the triple (p* — ¢2, 2pq, p* + ¢°)
is positive and (p* — ¢%)* + (2pq)? = (p* + ¢*)%.)

To show that any n > 2 appears in a triple of the form (p* — ¢2,2pq, p* + ¢?) it
suffices to note that if n = 2k is even, then we can take p = k and ¢ = 1. Then
n = 2k = 2pq, appears as the middle term of (p* — ¢2,2pq, p* + ¢*) and p > ¢ > 0.

Now if n > 2 is odd, we want to arrange that n = p?> — ¢* for some p > ¢. That
is, we want n = p* — ¢*> = (p+ ¢q)(p — q). Using the fact that n is odd, and equating
factorizations n = n-1 = (p+ q)(p — q), we can take n = p+qgand 1 = p — ¢,
solve for p and ¢, and obtain p = (n+1)/2 € Z and ¢ = (n — 1)/2 € Z. Thus,
for p = (n+1)/2 and ¢ = (n — 1)/2 we have that p > ¢ > 0 and the first term in

(p* — ¢% 2pq, p* + ¢°) is n.



(3) Explain why there are only finitely many distinct Pythagorean Triples (a, b, ¢) with

a = 100.

By the parametrization of the Pythagorean Triples, we know that each such PT
(a,b,c) has the form a = (p* — ¢*)r, b = 2pqr, and ¢ = (p* + ¢*)r for some positive
integers p, ¢, with p > ¢. When a = 100 we have 100 = (p*> —¢*)r = (p—q)(p+q)r.

Assume instead that there are infinitely many distinct PTs with a = 100, say

(alv bl; Cl>7 (a27 bQ; CQ), (a37 b37 C3>7 v

are distinct, but 100 = a; = ay = ---. The list (0.1) leads to infinitely many
factorizations of the form 100 = a; = (p; — ¢;)(p; + ¢i)r;. But 100 can be factored
into three factors in only finitely many different ways, so we must have ¢ < j where
(a;,b;, ¢;) and (a;, b;, ¢;) are different PTs, but the sequences of factors ((p; —¢;), (pi +
¢),ri) and ((p;—qj), (pj+q;), ;) are the same. This implies that p; = (pi_qi);w =
(pj_Qj)‘;(pj"‘Qj) =, g = (pi+qi);(prqi) _ (P_i+Qj);(pj_’1j) = ¢;, and r; = r;. But now,
since (ps, ¢i,7:) = (p;, qj,7;) we get that (a;, by, ¢;) = (07 — @2)ri, 2piqiri, (P2 +¢2)ri) =
(07 = a)ry, 2p5a5m5, (05 + ¢2)ry) = (aj,bs,¢;), contradicting our assumption that
(a;, b;,¢;) and (aj, b;, ¢;) are distinct PTs.




