

Ordered Fields.

Definition 1. A **field** is an algebraic structure $\mathbb{F} = \langle F; +, -, 0, \cdot, 1 \rangle$ which satisfies the following

- (1) Additive laws¹:
 - (a) (Associative law) $\forall x \forall y \forall z ((x + (y + z)) = ((x + y) + z))$.
 - (b) (Commutative law) $\forall x \forall y (x + y = y + x)$.
 - (c) (Unit law) $\forall x (x + 0 = x)$
 - (d) (Inverse law) $\forall x (x + (-x) = 0)$
- (2) Multiplicative laws:
 - (a) (Associative law) $\forall x \forall y \forall z ((x(yz)) = ((xy)z))$.
 - (b) (Commutative law) $\forall x \forall y (xy = yx)$.
 - (c) (Unit law) $\forall x (x1 = x)$
- (3) Law linking addition to multiplication:
 - (a) (Distributive law): $\forall x \forall y \forall z (x(y + z) = xy + xz)$.
- (4) Other defining properties that are not laws:
 - (a) $0 \neq 1$.
 - (b) $\forall x ((x \neq 0) \rightarrow \exists y (xy = 1))$.

If you know the definition of “abelian group”, the axioms for fields say that \mathbb{F} is additively an abelian group, $\mathbb{F} - \{0\}$ is multiplicatively an abelian group, and the additive and multiplicative structures are linked by the distributive law.

Examples. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}$ (p prime).

Nonexamples. $\mathbb{N}, \mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$ (n not a prime).

Definition 2. An **ordered field** is a structure $\mathbb{F} = \langle F; +, -, 0, \cdot, 1, \leq \rangle$ where

- (1) $\langle F; +, -, 0, \cdot, 1 \rangle$ is a field,
- (2) $\langle F; \leq \rangle$ is a totally ordered set (which means that \leq is a reflexive, antisymmetric, transitive relation satisfying $a \leq b, a = b$, or $b \leq a$ for all a, b),
- (3) (Order structure is linked to field structure):
 - (a) (Additive compatibility) $\forall x \forall y \forall z ((y \leq z) \rightarrow (x + y \leq x + z))$
 - (b) (Multiplicative compatibility) $\forall x \forall y \forall z (((y \leq z) \wedge (0 \leq x)) \rightarrow (xy \leq xz))$

Examples. \mathbb{Q}, \mathbb{R} .

Nonexamples. $\mathbb{C}, \mathbb{Z}/n\mathbb{Z}$ for any n .

¹A **law** or **identity** is a universally quantified equation.