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a; € R. This continued fraction is denoted [ag; a1, ag, . . ., ay].
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Continued fractions

@ Continued fractions were introduced by Rafael Bombelli in 1572.

@ A finite, simple, continued fraction has the form

. 1
ao 1 )
0 W T — —

1
1
an—1+an

a; € R. This continued fraction is denoted [ag; a1, ag, . . ., a,|. Here
ap € Z and a; € Z* for all i > 0.
@ An infinite continued fraction [ag; a1, ag, . . .| represents the number

lim (ag; a1, a9, ..., ay,l.
n_wo[o, 1,02, ..., Gy
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Continued fractions

@ Continued fractions were introduced by Rafael Bombelli in 1572.

@ A finite, simple, continued fraction has the form

N 1
ao 1 )
ar + a2+ L

1
1
an—1+an

a; € R. This continued fraction is denoted [ag; a1, ag, . . ., a,|. Here
ap € Z and a; € Z* for all i > 0.

@ An infinite continued fraction [ag; a1, ag, . . .| represents the number

nli—>nolo[a0; air,ag, ... ,an].
@ If we truncate [ag; a1, as, . . .| at the n-th term [ag; a1, az, . . ., ay), the

resulting fraction Z—Z is called the n-th convergent of [ag; a1, az, . . ..
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© A real number « is represented by a finite simple fraction iff « is rational.

© An irrational real number « has a unique representation as an infinite,
simple continued fraction.

© An irrational real number « is representable as an infinite, periodic,
simple, continued fraction iff « is a “quadratic surd”, which means that it
is an irrational root of a quadratic equation with integer coefficients.
(= Euler, < Lagrange)

© If the entries in the infinite, simple continued fraction [ag; a1, ag, . . .]
grow fast enough, then the real number it represents will be
transcendental. For example, a theorem of Bundschuh from 1984 implies

Theorem. If [ag; a1, .. .] is irrational and there is a real number » > 1 such
that a,, 1 > 7 - a;r for almost all n, then [ag; a1, . . .] is transcendental.
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Q0 =[11,1,1,1]=1+—4—.
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8 _1- _ 1
() g_[1,1,1,1,1]_1+@.

1+4

— M9 — [1- — 1
Q@ V2=[1;2] =[1;2,2,2,..] _1+2+2+L

Q@ ¢2=11:3,1,5,1,1,4,1,1,8,1,14,1,10,.. ].
Q@ 7=[37,151,2921,1,1,2,1,3,1,14,.. .

It turns out that if d is an nonsquare positive integer, then the continued
fraction expansion of v/d has a “palindromic block”

Vid = [ag; a1, a9, ..., az,a1,2ap,a1,...].
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Q If Z—Z and Z:ﬁ are consecutive convergents of the simple continued
fraction [ag; a1, ag, . . .|, then hy,y1kn — kpt1hn = (—1)". Hence
continued fractions may be used to find solutions to Bézout’s identity
ax + by = 1. (Find CF § = [ao; a1, ..., a,]. Use second-to-last
convergent.)

@ (Optimal rational approximation) If & = [ag; a1, ag, .. .] is irrational,
then Z—: is an optimal rational approximation to « in the sense that if % is
another rational approximation with 1 < k < k,,, then

a_ﬁ
ik
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Since V3 = [1;T,2],
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Example: 22 — 3y? = 1

Since v3 = [1;1,2],p = 2,
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Example: 22 — 3y? = 1

Since v/3 = [1;T,2], p = 2, so the first solution to z? — 3y? = 1 is
(z,y) = (h1, k1) = (2,1).
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The second solution is (x,y) = (hs, k3) = (7,4).
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Open Problem

Problem. (Waldschmidt, 2004)
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Open Problem

Problem. (Waldschmidt, 2004) Does there exist a real algebraic number

a = [ag; a1, az, . ..] whose degree is > 3 where the sequence (ag, ag, az, . . .)

is bounded?
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