

Continued Fractions and Pell's Equation

Continued fractions

Continued fractions

- 1 Continued fractions were introduced by Rafael Bombelli in 1572.

Continued fractions

- 1 Continued fractions were introduced by Rafael Bombelli in 1572.

Continued fractions

- ① Continued fractions were introduced by Rafael Bombelli in 1572.
- ② A finite, simple, continued fraction has the form

Continued fractions

- ① Continued fractions were introduced by Rafael Bombelli in 1572.
- ② A finite, simple, continued fraction has the form

Continued fractions

- ① Continued fractions were introduced by Rafael Bombelli in 1572.
- ② A finite, simple, continued fraction has the form

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_{n-1} + \cfrac{1}{a_n}}}}},$$

Continued fractions

- ① Continued fractions were introduced by Rafael Bombelli in 1572.
- ② A finite, simple, continued fraction has the form

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_{n-1} + \cfrac{1}{a_n}}}}},$$

$a_i \in \mathbb{R}$.

Continued fractions

- ① Continued fractions were introduced by Rafael Bombelli in 1572.
- ② A finite, simple, continued fraction has the form

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_{n-1} + \cfrac{1}{a_n}}}}},$$

$a_i \in \mathbb{R}$. This continued fraction is denoted $[a_0; a_1, a_2, \dots, a_n]$.

Continued fractions

- ① Continued fractions were introduced by Rafael Bombelli in 1572.
- ② A finite, simple, continued fraction has the form

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_{n-1} + \cfrac{1}{a_n}}}}},$$

$a_i \in \mathbb{R}$. This continued fraction is denoted $[a_0; a_1, a_2, \dots, a_n]$. Here $a_0 \in \mathbb{Z}$ and $a_i \in \mathbb{Z}^+$ for all $i > 0$.

Continued fractions

- ① Continued fractions were introduced by Rafael Bombelli in 1572.
- ② A finite, simple, continued fraction has the form

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_{n-1} + \cfrac{1}{a_n}}}}},$$

$a_i \in \mathbb{R}$. This continued fraction is denoted $[a_0; a_1, a_2, \dots, a_n]$. Here $a_0 \in \mathbb{Z}$ and $a_i \in \mathbb{Z}^+$ for all $i > 0$.

- ③ An infinite continued fraction $[a_0; a_1, a_2, \dots]$ represents the number $\lim_{n \rightarrow \infty} [a_0; a_1, a_2, \dots, a_n]$.

Continued fractions

- ① Continued fractions were introduced by Rafael Bombelli in 1572.
- ② A finite, simple, continued fraction has the form

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_{n-1} + \cfrac{1}{a_n}}}}},$$

$a_i \in \mathbb{R}$. This continued fraction is denoted $[a_0; a_1, a_2, \dots, a_n]$. Here $a_0 \in \mathbb{Z}$ and $a_i \in \mathbb{Z}^+$ for all $i > 0$.

- ③ An infinite continued fraction $[a_0; a_1, a_2, \dots]$ represents the number $\lim_{n \rightarrow \infty} [a_0; a_1, a_2, \dots, a_n]$.
- ④ If we truncate $[a_0; a_1, a_2, \dots]$ at the n -th term $[a_0; a_1, a_2, \dots, a_n]$, the resulting fraction $\frac{h_n}{k_n}$ is called the n -th convergent of $[a_0; a_1, a_2, \dots]$.

Facts

- 1 A real number α is represented by a finite simple fraction iff α is rational.

- 1 A real number α is represented by a finite simple fraction iff α is rational.

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.
- ③ An irrational real number α is representable as an infinite, periodic, simple, continued fraction iff α is a “quadratic surd”,

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.
- ③ An irrational real number α is representable as an infinite, periodic, simple, continued fraction iff α is a “quadratic surd”,

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.
- ③ An irrational real number α is representable as an infinite, periodic, simple, continued fraction iff α is a “quadratic surd”, which means that it is an irrational root of a quadratic equation with integer coefficients.

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.
- ③ An irrational real number α is representable as an infinite, periodic, simple, continued fraction iff α is a “quadratic surd”, which means that it is an irrational root of a quadratic equation with integer coefficients.
(\Rightarrow Euler, \Leftarrow Lagrange)

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.
- ③ An irrational real number α is representable as an infinite, periodic, simple, continued fraction iff α is a “quadratic surd”, which means that it is an irrational root of a quadratic equation with integer coefficients.
(\Rightarrow Euler, \Leftarrow Lagrange)
- ④ If the entries in the infinite, simple continued fraction $[a_0; a_1, a_2, \dots]$ grow fast enough, then the real number it represents will be transcendental.

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.
- ③ An irrational real number α is representable as an infinite, periodic, simple, continued fraction iff α is a “quadratic surd”, which means that it is an irrational root of a quadratic equation with integer coefficients.
(\Rightarrow Euler, \Leftarrow Lagrange)
- ④ If the entries in the infinite, simple continued fraction $[a_0; a_1, a_2, \dots]$ grow fast enough, then the real number it represents will be transcendental.

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.
- ③ An irrational real number α is representable as an infinite, periodic, simple, continued fraction iff α is a “quadratic surd”, which means that it is an irrational root of a quadratic equation with integer coefficients.
(\Rightarrow Euler, \Leftarrow Lagrange)
- ④ If the entries in the infinite, simple continued fraction $[a_0; a_1, a_2, \dots]$ grow fast enough, then the real number it represents will be transcendental. For example, a theorem of Budschuh from 1984 implies

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.
- ③ An irrational real number α is representable as an infinite, periodic, simple, continued fraction iff α is a “quadratic surd”, which means that it is an irrational root of a quadratic equation with integer coefficients.
(\Rightarrow Euler, \Leftarrow Lagrange)
- ④ If the entries in the infinite, simple continued fraction $[a_0; a_1, a_2, \dots]$ grow fast enough, then the real number it represents will be transcendental. For example, a theorem of Budschuh from 1984 implies

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.
- ③ An irrational real number α is representable as an infinite, periodic, simple, continued fraction iff α is a “quadratic surd”, which means that it is an irrational root of a quadratic equation with integer coefficients.
(\Rightarrow Euler, \Leftarrow Lagrange)
- ④ If the entries in the infinite, simple continued fraction $[a_0; a_1, a_2, \dots]$ grow fast enough, then the real number it represents will be transcendental. For example, a theorem of Budschuh from 1984 implies

Theorem.

- ① A real number α is represented by a finite simple fraction iff α is rational.
- ② An irrational real number α has a unique representation as an infinite, simple continued fraction.
- ③ An irrational real number α is representable as an infinite, periodic, simple, continued fraction iff α is a “quadratic surd”, which means that it is an irrational root of a quadratic equation with integer coefficients.
(\Rightarrow Euler, \Leftarrow Lagrange)
- ④ If the entries in the infinite, simple continued fraction $[a_0; a_1, a_2, \dots]$ grow fast enough, then the real number it represents will be transcendental. For example, a theorem of Budschuh from 1984 implies

Theorem. If $[a_0; a_1, \dots]$ is irrational and there is a real number $r > 1$ such that $a_{n+1} \geq r \cdot a_n^n$ for almost all n , then $[a_0; a_1, \dots]$ is transcendental.

Examples

Examples

1 $\frac{8}{5} = [1; 1, 1, 1, 1] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$.

Examples

1 $\frac{8}{5} = [1; 1, 1, 1, 1] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$.

Examples

① $\frac{8}{5} = [1; 1, 1, 1, 1] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$.

② $\sqrt{2} = [1; \overline{2}] = [1; 2, 2, 2, \dots] = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \ddots}}}$.

Examples

① $\frac{8}{5} = [1; 1, 1, 1, 1] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$.

② $\sqrt{2} = [1; \overline{2}] = [1; 2, 2, 2, \dots] = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \ddots}}}$.

Examples

① $\frac{8}{5} = [1; 1, 1, 1, 1] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$.

② $\sqrt{2} = [1; \overline{2}] = [1; 2, 2, 2, \dots] = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{\ddots}}}$.

③ $\sqrt[3]{2} = [1; 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, \dots]$.

Examples

① $\frac{8}{5} = [1; 1, 1, 1, 1] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$.

② $\sqrt{2} = [1; \overline{2}] = [1; 2, 2, 2, \dots] = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{\ddots}}}$.

③ $\sqrt[3]{2} = [1; 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, \dots]$.

Examples

① $\frac{8}{5} = [1; 1, 1, 1, 1] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$.

② $\sqrt{2} = [1; \overline{2}] = [1; 2, 2, 2, \dots] = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{\ddots}}}$.

③ $\sqrt[3]{2} = [1; 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, \dots]$.

④ $\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, \dots]$.

Examples

① $\frac{8}{5} = [1; 1, 1, 1, 1] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$.

② $\sqrt{2} = [1; \overline{2}] = [1; 2, 2, 2, \dots] = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{\ddots}}}$.

③ $\sqrt[3]{2} = [1; 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, \dots]$.

④ $\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, \dots]$.

Examples

① $\frac{8}{5} = [1; 1, 1, 1, 1] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$.

② $\sqrt{2} = [1; \overline{2}] = [1; 2, 2, 2, \dots] = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{\ddots}}}$.

③ $\sqrt[3]{2} = [1; 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, \dots]$.

④ $\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, \dots]$.

It turns out that if d is an nonsquare positive integer, then the continued fraction expansion of \sqrt{d} has a “palindromic block”

Examples

① $\frac{8}{5} = [1; 1, 1, 1, 1] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$.

② $\sqrt{2} = [1; \overline{2}] = [1; 2, 2, 2, \dots] = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{\ddots}}}$.

③ $\sqrt[3]{2} = [1; 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, \dots]$.

④ $\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, \dots]$.

It turns out that if d is an nonsquare positive integer, then the continued fraction expansion of \sqrt{d} has a “palindromic block”

$$\sqrt{d} = [a_0; a_1, a_2, \dots, a_2, a_1, 2a_0, a_1, \dots].$$

More facts

More facts

- ① If $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ are consecutive convergents of the simple continued fraction $[a_0; a_1, a_2, \dots]$,

More facts

- ① If $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ are consecutive convergents of the simple continued fraction $[a_0; a_1, a_2, \dots]$,

More facts

- ④ If $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ are consecutive convergents of the simple continued fraction $[a_0; a_1, a_2, \dots]$, then $h_{n+1}k_n - k_{n+1}h_n = (-1)^n$. Hence continued fractions may be used to find solutions to Bézout's identity $ax + by = 1$.

More facts

- ① If $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ are consecutive convergents of the simple continued fraction $[a_0; a_1, a_2, \dots]$, then $h_{n+1}k_n - k_{n+1}h_n = (-1)^n$. Hence continued fractions may be used to find solutions to Bézout's identity $ax + by = 1$. (Find CF $\frac{a}{b} = [a_0; a_1, \dots, a_r]$).

More facts

- ① If $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ are consecutive convergents of the simple continued fraction $[a_0; a_1, a_2, \dots]$, then $h_{n+1}k_n - k_{n+1}h_n = (-1)^n$. Hence continued fractions may be used to find solutions to Bézout's identity $ax + by = 1$. (Find CF $\frac{a}{b} = [a_0; a_1, \dots, a_r]$. Use second-to-last convergent.)

More facts

- ① If $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ are consecutive convergents of the simple continued fraction $[a_0; a_1, a_2, \dots]$, then $h_{n+1}k_n - k_{n+1}h_n = (-1)^n$. Hence continued fractions may be used to find solutions to Bézout's identity $ax + by = 1$. (Find CF $\frac{a}{b} = [a_0; a_1, \dots, a_r]$. Use second-to-last convergent.)
- ② (Optimal rational approximation)

More facts

- ① If $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ are consecutive convergents of the simple continued fraction $[a_0; a_1, a_2, \dots]$, then $h_{n+1}k_n - k_{n+1}h_n = (-1)^n$. Hence continued fractions may be used to find solutions to Bézout's identity $ax + by = 1$. (Find CF $\frac{a}{b} = [a_0; a_1, \dots, a_r]$. Use second-to-last convergent.)
- ② (Optimal rational approximation)

More facts

- ① If $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ are consecutive convergents of the simple continued fraction $[a_0; a_1, a_2, \dots]$, then $h_{n+1}k_n - k_{n+1}h_n = (-1)^n$. Hence continued fractions may be used to find solutions to Bézout's identity $ax + by = 1$. (Find CF $\frac{a}{b} = [a_0; a_1, \dots, a_r]$. Use second-to-last convergent.)
- ② (Optimal rational approximation) If $\alpha = [a_0; a_1, a_2, \dots]$ is irrational,

- ① If $\frac{h_n}{k_n}$ and $\frac{h_{n+1}}{k_{n+1}}$ are consecutive convergents of the simple continued fraction $[a_0; a_1, a_2, \dots]$, then $h_{n+1}k_n - k_{n+1}h_n = (-1)^n$. Hence continued fractions may be used to find solutions to Bézout's identity $ax + by = 1$. (Find CF $\frac{a}{b} = [a_0; a_1, \dots, a_r]$. Use second-to-last convergent.)
- ② (Optimal rational approximation) If $\alpha = [a_0; a_1, a_2, \dots]$ is irrational, then $\frac{h_n}{k_n}$ is an optimal rational approximation to α in the sense that if $\frac{h}{k}$ is another rational approximation with $1 \leq k \leq k_n$, then

$$\left| \alpha - \frac{h_n}{k_n} \right| \leq \left| \alpha - \frac{h}{k} \right|.$$

Pell's Equation

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square.

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square. The solutions to Pell's equation $x^2 - d \cdot y^2 = 1$ may be computed from the convergents of $\sqrt{d} = [a_0; a_1, a_2, \dots]$.

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square. The solutions to Pell's equation $x^2 - d \cdot y^2 = 1$ may be computed from the convergents of $\sqrt{d} = [a_0; a_1, a_2, \dots]$.

Stage 1.

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square. The solutions to Pell's equation $x^2 - d \cdot y^2 = 1$ may be computed from the convergents of $\sqrt{d} = [a_0; a_1, a_2, \dots]$.

Stage 1. Find the period:

$$\sqrt{d} = [a_0; \overline{a_1, \dots, a_{p-1}, 2a_0}] = [a_0; \overline{a_{p-1}, \dots, a_1, 2a_0}].$$

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square. The solutions to Pell's equation $x^2 - d \cdot y^2 = 1$ may be computed from the convergents of $\sqrt{d} = [a_0; a_1, a_2, \dots]$.

Stage 1. Find the period:

$$\sqrt{d} = [a_0; \overline{a_1, \dots, a_{p-1}, 2a_0}] = [a_0; \overline{a_{p-1}, \dots, a_1, 2a_0}].$$

Stage 2.

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square. The solutions to Pell's equation $x^2 - d \cdot y^2 = 1$ may be computed from the convergents of $\sqrt{d} = [a_0; a_1, a_2, \dots]$.

Stage 1. Find the period:

$$\sqrt{d} = [a_0; \overline{a_1, \dots, a_{p-1}, 2a_0}] = [a_0; \overline{a_{p-1}, \dots, a_1, 2a_0}].$$

Stage 2. Write down the solution:

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square. The solutions to Pell's equation $x^2 - d \cdot y^2 = 1$ may be computed from the convergents of $\sqrt{d} = [a_0; a_1, a_2, \dots]$.

Stage 1. Find the period:

$$\sqrt{d} = [a_0; \overline{a_1, \dots, a_{p-1}, 2a_0}] = [a_0; \overline{a_{p-1}, \dots, a_1, 2a_0}].$$

Stage 2. Write down the solution:

- If p is even, then the solutions to $x^2 - dy^2 = 1$ have the form $(x, y) = (h_{p-1}, k_{p-1}), (h_{2p-1}, k_{2p-1}), (h_{3p-1}, k_{3p-1}), \dots$

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square. The solutions to Pell's equation $x^2 - d \cdot y^2 = 1$ may be computed from the convergents of $\sqrt{d} = [a_0; a_1, a_2, \dots]$.

Stage 1. Find the period:

$$\sqrt{d} = [a_0; \overline{a_1, \dots, a_{p-1}, 2a_0}] = [a_0; \overline{a_{p-1}, \dots, a_1, 2a_0}].$$

Stage 2. Write down the solution:

- If p is even, then the solutions to $x^2 - dy^2 = 1$ have the form $(x, y) = (h_{p-1}, k_{p-1}), (h_{2p-1}, k_{2p-1}), (h_{3p-1}, k_{3p-1}), \dots$

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square. The solutions to Pell's equation $x^2 - d \cdot y^2 = 1$ may be computed from the convergents of $\sqrt{d} = [a_0; a_1, a_2, \dots]$.

Stage 1. Find the period:

$$\sqrt{d} = [a_0; \overline{a_1, \dots, a_{p-1}, 2a_0}] = [a_0; \overline{a_{p-1}, \dots, a_1, 2a_0}].$$

Stage 2. Write down the solution:

- If p is even, then the solutions to $x^2 - dy^2 = 1$ have the form $(x, y) = (h_{p-1}, k_{p-1}), (h_{2p-1}, k_{2p-1}), (h_{3p-1}, k_{3p-1}), \dots$
- If p is odd, then the solutions to $x^2 - dy^2 = 1$ have the form $(x, y) = (h_{2p-1}, k_{2p-1}), (h_{4p-1}, k_{4p-1}), (h_{6p-1}, k_{6p-1}), \dots$

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square. The solutions to Pell's equation $x^2 - d \cdot y^2 = 1$ may be computed from the convergents of $\sqrt{d} = [a_0; a_1, a_2, \dots]$.

Stage 1. Find the period:

$$\sqrt{d} = [a_0; \overline{a_1, \dots, a_{p-1}, 2a_0}] = [a_0; \overline{a_{p-1}, \dots, a_1, 2a_0}].$$

Stage 2. Write down the solution:

- If p is even, then the solutions to $x^2 - dy^2 = 1$ have the form $(x, y) = (h_{p-1}, k_{p-1}), (h_{2p-1}, k_{2p-1}), (h_{3p-1}, k_{3p-1}), \dots$
- If p is odd, then the solutions to $x^2 - dy^2 = 1$ have the form $(x, y) = (h_{2p-1}, k_{2p-1}), (h_{4p-1}, k_{4p-1}), (h_{6p-1}, k_{6p-1}), \dots$

Pell's Equation

Assume $d \in \mathbb{Z}^+$ is not a square. The solutions to Pell's equation $x^2 - d \cdot y^2 = 1$ may be computed from the convergents of $\sqrt{d} = [a_0; a_1, a_2, \dots]$.

Stage 1. Find the period:

$$\sqrt{d} = [a_0; \overline{a_1, \dots, a_{p-1}, 2a_0}] = [a_0; \overline{a_{p-1}, \dots, a_1, 2a_0}].$$

Stage 2. Write down the solution:

- If p is even, then the solutions to $x^2 - dy^2 = 1$ have the form $(x, y) = (h_{p-1}, k_{p-1}), (h_{2p-1}, k_{2p-1}), (h_{3p-1}, k_{3p-1}), \dots$
- If p is odd, then the solutions to $x^2 - dy^2 = 1$ have the form $(x, y) = (h_{2p-1}, k_{2p-1}), (h_{4p-1}, k_{4p-1}), (h_{6p-1}, k_{6p-1}), \dots$

Example: $x^2 - 3y^2 = 1$

Example: $x^2 - 3y^2 = 1$

Since $\sqrt{3} = [1; \overline{1, 2}]$,

Example: $x^2 - 3y^2 = 1$

Since $\sqrt{3} = [1; \overline{1, 2}]$, $p = 2$,

Example: $x^2 - 3y^2 = 1$

Since $\sqrt{3} = [1; \overline{1, 2}]$, $p = 2$, so the first solution to $x^2 - 3y^2 = 1$ is $(x, y) = (h_1, k_1) = (2, 1)$.

Example: $x^2 - 3y^2 = 1$

Since $\sqrt{3} = [1; \overline{1, 2}]$, $p = 2$, so the first solution to $x^2 - 3y^2 = 1$ is $(x, y) = (h_1, k_1) = (2, 1)$.

The second solution is $(x, y) = (h_3, k_3) = (7, 4)$.

Example: $x^2 - 3y^2 = 1$

Since $\sqrt{3} = [1; \overline{1, 2}]$, $p = 2$, so the first solution to $x^2 - 3y^2 = 1$ is $(x, y) = (h_1, k_1) = (2, 1)$.

The second solution is $(x, y) = (h_3, k_3) = (7, 4)$.

The third solution is $(x, y) = (h_5, k_5) = ?$

Example: $x^2 - 3y^2 = 1$

Since $\sqrt{3} = [1; \overline{1, 2}]$, $p = 2$, so the first solution to $x^2 - 3y^2 = 1$ is $(x, y) = (h_1, k_1) = (2, 1)$.

The second solution is $(x, y) = (h_3, k_3) = (7, 4)$.

The third solution is $(x, y) = (h_5, k_5) = ?$

Open Problem

Open Problem

Problem.

Open Problem

Problem. (Waldschmidt, 2004)

Open Problem

Problem. (Waldschmidt, 2004) Does there exist a real algebraic number $\alpha = [a_0; a_1, a_2, \dots]$ whose degree is ≥ 3 where the sequence (a_0, a_1, a_2, \dots) is bounded?