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Continued fractions

1 Continued fractions were introduced by Rafael Bombelli in 1572.
2 A finite, simple, continued fraction has the form

a0 + 1
a1 + 1

a2+ 1
. . .+ 1

an−1+ 1
an

,

ai ∈ R. This continued fraction is denoted [a0; a1, a2, . . . , an]. Here
a0 ∈ Z and ai ∈ Z+ for all i > 0.

3 An infinite continued fraction [a0; a1, a2, . . .] represents the number
lim

n→∞
[a0; a1, a2, . . . , an].

4 If we truncate [a0; a1, a2, . . .] at the n-th term [a0; a1, a2, . . . , an], the
resulting fraction hn

kn
is called the n-th convergent of [a0; a1, a2, . . .].
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Facts

1 A real number α is represented by a finite simple fraction iff α is rational.
2 An irrational real number α has a unique representation as an infinite,

simple continued fraction.
3 An irrational real number α is representable as an infinite, periodic,

simple, continued fraction iff α is a “quadratic surd”, which means that it
is an irrational root of a quadratic equation with integer coefficients.
(⇒ Euler, ⇐ Lagrange)

4 If the entries in the infinite, simple continued fraction [a0; a1, a2, . . .]
grow fast enough, then the real number it represents will be
transcendental. For example, a theorem of Bundschuh from 1984 implies

Theorem. If [a0; a1, . . .] is irrational and there is a real number r > 1 such
that an+1 ≥ r · an

n for almost all n, then [a0; a1, . . .] is transcendental.
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Examples

1 8
5 = [1; 1, 1, 1, 1] = 1 + 1

1+ 1
1+ 1

1+ 1
1

.

2
√

2 = [1; 2] = [1; 2, 2, 2, . . .] = 1 + 1
2+ 1

2+ 1
. . .

.

3 3√2 = [1; 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, . . .].

4 π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .].

It turns out that if d is an nonsquare positive integer, then the continued
fraction expansion of

√
d has a “palindromic block”

√
d = [a0; a1, a2, . . . , a2, a1, 2a0, a1, . . .].
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More facts

1 If hn
kn

and hn+1
kn+1

are consecutive convergents of the simple continued
fraction [a0; a1, a2, . . .], then hn+1kn − kn+1hn = (−1)n. Hence
continued fractions may be used to find solutions to Bézout’s identity
ax + by = 1. (Find CF a

b = [a0; a1, . . . , ar]. Use second-to-last
convergent.)

2 (Optimal rational approximation) If α = [a0; a1, a2, . . .] is irrational,
then hn

kn
is an optimal rational approximation to α in the sense that if h

k is
another rational approximation with 1 ≤ k ≤ kn, then∣∣∣α − hn

kn

∣∣∣ ≤
∣∣∣α − h

k

∣∣∣.
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Pell’s Equation

Assume d ∈ Z+ is not a square. The solutions to Pell’s equation
x2 − d · y2 = 1 may be computed from the convergents of√

d = [a0; a1, a2, . . .].

Stage 1. Find the period:√
d = [a0; a1, . . . , ap−1, 2a0] = [a0; ap−1, . . . , a1, 2a0].

Stage 2. Write down the solution:

If p is even, then the solutions to x2 − dy2 = 1 have the form
(x, y) = (hp−1, kp−1), (h2p−1, k2p−1), (h3p−1, k3p−1), . . .

If p is odd, then the solutions to x2 − dy2 = 1 have the form
(x, y) = (h2p−1, k2p−1), (h4p−1, k4p−1), (h6p−1, k6p−1), . . .
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Example: x2 − 3y2 = 1

Since
√

3 = [1; 1, 2], p = 2, so the first solution to x2 − 3y2 = 1 is
(x, y) = (h1, k1) = (2, 1).
The second solution is (x, y) = (h3, k3) = (7, 4).
The third solution is (x, y) = (h5, k5) =?
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Open Problem

Problem. (Waldschmidt, 2004) Does there exist a real algebraic number
α = [a0; a1, a2, . . .] whose degree is ≥ 3 where the sequence (a0, a1, a2, . . .)
is bounded?
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