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The purpose of the theorem

Our goal is to convince ourselves that the only laws of functional composition (+
identity element!) are the consequences of

1 (Associative Law) (∀f)(∀g)(∀h)(f ◦ (g ◦ h) = (f ◦ g) ◦ h),

2 (Unit Laws) (∀f)(1 ◦ f = f) and (∀f)(f ◦ 1 = f).

Here a law is a universally quantified equation. A law,

L = (∀x)(s(x) = t(x)),

is a consequence of the Associative Law + Unit Laws if every structure that satisfies
the Associative Law + Unit Laws also must satisfy L.

Example. A 4-variable associative law, like

(∀f)(∀g)(∀h)(∀k)((((f ◦ g) ◦ h) ◦ k) = (f ◦ (g ◦ (h ◦ k))),

is a consequence of the 3-variable associative law, since any structure that satisfies
the 3-variable version will also satisfy the 4-variable version. (Proof?)
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The theorem

Theorem. If M = ⟨M ; ◦, 1⟩ is a monoid, then M is embeddable in a function algebra
F = ⟨F ; ◦, 1⟩.

Before starting the proof, let me describe some special functions λm : M → M .
Suppose the multiplication table for M is

◦ 1 a b

1 1 a b
a a b b
b b b b

The rows of this 2d-array define function tables for left multiplication operations
λm : M → M : x 7→ m ◦ x:

x 1 a b
λ1(x) 1 a b

x 1 a b
λa(x) a b b

x 1 a b
λb(x) b b b
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The theorem

Theorem. If M = ⟨M ; ◦, 1⟩ is a monoid, then M is embeddable in a function
algebra F = ⟨F ; ◦, 1⟩.

Proof: Given M, the function algebra we will use will involve
F = Funct(M, M). This set of functions contains all “left multiplication
functions”: for m ∈ M :

λm : M → M : x 7→ m ◦ x.

In symbols, λm(x) = m ◦ x; in words, λm is ‘left multiplication by m’.

Claims.

(i) The function h : M → F : m 7→ λm is a homomorphism of monoids, and

(ii) h is injective.
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Claim (i)

Claim (i). The function h : M → F : m 7→ λm is a homomorphism of monoids.

Must show that h(1) = 1 and h(m ◦ n) = h(m) ◦ h(n). These equalities are
equalities of functions in F , so we must show that

(∀x)(λ1(x) = x) and (∀x)(λm◦n(x) = (λm ◦ λn)(x)).

For the first of these equalities, for any choice of x ∈ M , λ1(x) = 1 ◦ x = x
because of the Left Identity Law. For the second, for any choice of x ∈ M ,

λm◦n(x) = (m ◦ n) ◦ x (Definition of λm◦n)
= m ◦ (n ◦ x) (Associative Law in M, since m, n, x ∈ M )
= λm(λn(x)). (Definition of λm, λn)
= (λm ◦ λn)(x). (Definition of composition)

In passing from the first line to the second we made use of the Associative Law.
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Claim (ii)

Claim (ii). h is injective.

We must argue that h(m) = h(n) implies that m = n in M . In other words, we must
argue that if h(m) = λm(x) and h(n) = λn(x) are equal as functions, then m = n.
In the contrapositive form, we must show that if m ̸= n, then λm(x) and λn(x) are
NOT the same function; i.e., they disagree on some x.

Subclaim. If m ̸= n, then λm(x) and λn(x) are different functions. In fact, they
disagree at the element x = 1.

Proof of Subclaim: Assume that m ̸= n. Then

λm(1) = m ◦ 1 (Definition of λm)
= m (Right Identity Law)
̸= n (Initial Assumption)
= n ◦ 1 (Right Identity Law)
= λn(1). (Definition of λn)

This argument depends on the Right Identity Law. 2
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Significance

A strong version of the Łos-Tarski theorem, from model theory, states

Theorem. If h : A → B is an embedding, then any universal sentence that holds in B
also holds in A.

If you combine this with the Cayley Representation Theorem, you find that any
universally quantified sentence that holds in all function algebras will hold in all
monoids. The converse also holds: any universally quantified sentence that holds in
all monoids will hold in all functions algebras. Hence, the class of functions algebras
satisfies the same universally quantified sentences as the class of monoids. The
universally quantified sentences that hold in all monoids are the Associative Law and
the Unit Laws + their consequences (since that is how they are defined). Hence, the
universally quantified sentences that hold in all function algebras are the Associative
Law and the Unit Laws + their consequences.

We have answered the question: What are the laws of functional composition?
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What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular,

for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents,

for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8



What if we allow existential quantification?

If we allow existential quantification, then we can say even more about
functional composition!

1 (Function algebras are regular monoids)

(∀f)(∃g)(f ◦ g ◦ f = f).

Not all monoids are regular, for example ⟨N; +, 0⟩ is not regular.

2 (Function algebras of more than one element have non-identity
idempotent elements)

(∃x)(x ̸= 1) → (∃e)((e ̸= 1) ∧ (e ◦ e = e)).

Not all nontrivial monoids have non-identity idempotents, for example
⟨N; +, 0⟩.

The Cayley Representation Theorem, Version 1 8 / 8


