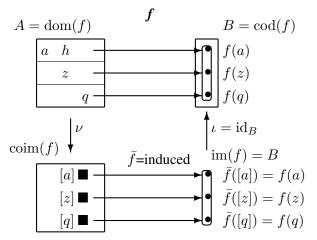
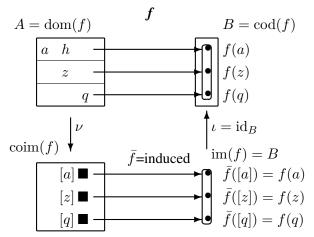
Counting surjective functions

When $f: A \to B$ is surjective, then im(f) = B and $\iota = id_B$.

When $f: A \to B$ is surjective, then im(f) = B and $\iota = id_B$.

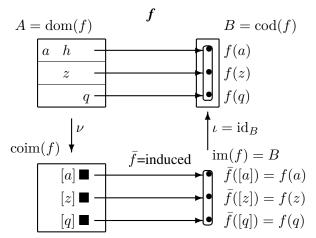


When $f: A \to B$ is surjective, then im(f) = B and $\iota = id_B$.



The function f is completely determined by its coimage and its induced function \bar{f} .

When $f: A \to B$ is surjective, then im(f) = B and $\iota = id_B$.



The function f is completely determined by its coimage and its induced function \overline{f} . Hence # surjective f's = (# coim's) × ($\#\overline{f}$'s).

If $f: A \to B$ is surjective, |A| = n, and |B| = k, then the induced function

If $f \colon A \to B$ is surjective, |A| = n, and |B| = k, then the induced function

 \overline{f} : $\operatorname{coim}(f) \to \operatorname{im}(f) = B$

If $f: A \to B$ is surjective, |A| = n, and |B| = k, then the induced function $\overline{f}: \operatorname{coim}(f) \to \operatorname{im}(f) = B$

is a bijection from one k-element set to another.

If $f: A \to B$ is surjective, |A| = n, and |B| = k, then the induced function

 \overline{f} : coim $(f) \to \operatorname{im}(f) = B$

is a bijection from one k-element set to another. The number of such bijections is

If $f \colon A \to B$ is surjective, |A| = n, and |B| = k, then the induced function

 \overline{f} : $\operatorname{coim}(f) \to \operatorname{im}(f) = B$

is a bijection from one k-element set to another. The number of such bijections is

k!

If $f: A \to B$ is surjective, |A| = n, and |B| = k, then the induced function

 \overline{f} : $\operatorname{coim}(f) \to \operatorname{im}(f) = B$

is a bijection from one k-element set to another. The number of such bijections is

k!

Hence, the number of surjective functions $f \colon A \to B$, |A| = n, and |B| = k, is

If $f: A \to B$ is surjective, |A| = n, and |B| = k, then the induced function

 $\bar{f}: \operatorname{coim}(f) \to \operatorname{im}(f) = B$

is a bijection from one k-element set to another. The number of such bijections is

k!

Hence, the number of surjective functions $f \colon A \to B$, |A| = n, and |B| = k, is

(#k-element partitions of $A) \times k!$

Definition. The number of partitions of an n-element set into k cells is denoted

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c}n\\k\end{array}\right\} \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{ \begin{array}{c} n \\ k \end{array} \right\}$$
 or $S(n,k),$

and is called a Stirling number of the second kind.

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c}n\\k\end{array}\right\} \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

Examples.

• S(3,3) = 1,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left\{\begin{array}{c}n\\k\end{array}\right\} \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

Examples.

• S(3,3) = 1,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left. \begin{array}{c} n \\ k \end{array} \right\} \qquad \text{or} \qquad S(n,k),$$

and is called a *Stirling number of the second kind*.

Examples.

• S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0, 1, 2\}$ into 3 cells.

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left[\begin{array}{c}n\\k\end{array}\right] \qquad \text{or} \qquad S(n,k),$$

and is called a *Stirling number of the second kind*.

Examples.

S(3,3) = 1, since {{0}, {1}, {2}} is the only partition of {0,1,2} into 3 cells. (I use 0/1/2 as shorthand for this partition.)

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left[\begin{array}{c}n\\k\end{array}\right] \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

- S(3,3) = 1, since {{0}, {1}, {2}} is the only partition of {0, 1, 2} into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left[\begin{array}{c}n\\k\end{array}\right] \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

- S(3,3) = 1, since {{0}, {1}, {2}} is the only partition of {0, 1, 2} into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left[\begin{array}{c}n\\k\end{array}\right] \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

- S(3,3) = 1, since {{0}, {1}, {2}} is the only partition of {0,1,2} into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left[\begin{array}{c}n\\k\end{array}\right] \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

- S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0, 1, 2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2, 02/1,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left[\begin{array}{c}n\\k\end{array}\right] \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

- S(3,3) = 1, since {{0}, {1}, {2}} is the only partition of {0,1,2} into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2, 02/1, 12/0.

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left[\begin{array}{c}n\\k\end{array}\right] \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

- S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0, 1, 2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2, 02/1, 12/0.
- S(3,1) = 1,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left[\begin{array}{c}n\\k\end{array}\right] \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

- S(3,3) = 1, since $\{\{0\}, \{1\}, \{2\}\}$ is the only partition of $\{0, 1, 2\}$ into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2, 02/1, 12/0.
- S(3,1) = 1,

Definition. The number of partitions of an n-element set into k cells is denoted

$$\left[\begin{array}{c}n\\k\end{array}\right] \qquad \text{or} \qquad S(n,k),$$

and is called a Stirling number of the second kind.

- S(3,3) = 1, since {{0}, {1}, {2}} is the only partition of {0, 1, 2} into 3 cells. (I use 0/1/2 as shorthand for this partition.)
- S(3,2) = 3, since we have 01/2, 02/1, 12/0.
- S(3,1) = 1, since we have only 012.

S(n,k) is "dual" to $\overline{C(n,k)}$

The number of images of injective functions $k \rightarrow n$

The number of images of injective functions $k \rightarrow n$ equals the number of k-element subsets of n,

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of coimages of surjective functions $n \rightarrow k$

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n,k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells,

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells, which is counted by the function S(n, k).

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells, which is counted by the function S(n, k).

In fact, since a surjective function $f: n \to k$ is determined by choice of coimage and choice of induced function,

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells, which is counted by the function S(n, k).

In fact, since a surjective function $f: n \to k$ is determined by choice of coimage and choice of induced function, the number of surjective functions is $k! \cdot S(n, k)$.

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n, k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells, which is counted by the function S(n, k).

In fact, since a surjective function $f: n \to k$ is determined by choice of coimage and choice of induced function, the number of surjective functions is $k! \cdot S(n, k)$.

The number of images of injective functions $k \to n$ equals the number of k-element subsets of n, which is counted by the function C(n,k).

The number of coimages of surjective functions $n \to k$ equals the number of partitions of n into k cells, which is counted by the function S(n, k).

In fact, since a surjective function $f: n \to k$ is determined by choice of coimage and choice of induced function, the number of surjective functions is $k! \cdot S(n, k)$.

There are many parallels between C(n, k) and S(n, k).

Theorem.

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

(2) S(n,n) = 1 and S(n,0) = 0 if n > 0.

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

(2) S(n,n) = 1 and S(n,0) = 0 if n > 0.

Theorem.

(1)
$$S(n,k) = 0$$
 if $k < 0$ or $k > n$.
(2) $S(n,n) = 1$ and $S(n,0) = 0$ if $n > 0$.
(3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Theorem.

(1)
$$S(n,k) = 0$$
 if $k < 0$ or $k > n$.
(2) $S(n,n) = 1$ and $S(n,0) = 0$ if $n > 0$.
(3) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$.

Theorem.

(1)
$$S(n,k) = 0$$
 if $k < 0$ or $k > n$.

(2)
$$S(n,n) = 1$$
 and $S(n,0) = 0$ if $n > 0$.

(3)
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Theorem.

(1)
$$S(n,k) = 0$$
 if $k < 0$ or $k > n$.

(2)
$$S(n,n) = 1$$
 and $S(n,0) = 0$ if $n > 0$.

(3)
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Item (2):

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

(2)
$$S(n,n) = 1$$
 and $S(n,0) = 0$ if $n > 0$.

(3)
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Item (2): S(n, n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

(2)
$$S(n,n) = 1$$
 and $S(n,0) = 0$ if $n > 0$.

(3)
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Item (2): S(n, n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells.

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

(2)
$$S(n,n) = 1$$
 and $S(n,0) = 0$ if $n > 0$.

(3)
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Item (2): S(n, n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

(2)
$$S(n,n) = 1$$
 and $S(n,0) = 0$ if $n > 0$.

(3)
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Item (2): S(n,n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

For Item (3), count the number of partitions of $\{x_1, x_2, \ldots, x_n\}$ into k cells by considering which cell gets x_n .

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

(2)
$$S(n,n) = 1$$
 and $S(n,0) = 0$ if $n > 0$.

(3)
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Item (2): S(n,n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

For Item (3), count the number of partitions of $\{x_1, x_2, \ldots, x_n\}$ into k cells by considering which cell gets x_n . There are S(n-1, k-1) partitions in which x_n is isolated.

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

(2)
$$S(n,n) = 1$$
 and $S(n,0) = 0$ if $n > 0$.

(3)
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Item (2): S(n,n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

For Item (3), count the number of partitions of $\{x_1, x_2, \ldots, x_n\}$ into k cells by considering which cell gets x_n . There are S(n-1, k-1) partitions in which x_n is isolated. (That is, of the form $\cdots / \cdots / \cdots / x_n$.)

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

(2)
$$S(n,n) = 1$$
 and $S(n,0) = 0$ if $n > 0$.

(3)
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Item (2): S(n,n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

For Item (3), count the number of partitions of $\{x_1, x_2, \ldots, x_n\}$ into k cells by considering which cell gets x_n . There are S(n - 1, k - 1) partitions in which x_n is isolated. (That is, of the form $\cdots / \cdots / x_n$.) There are $C(k, 1) \cdot S(n - 1, k) = k \cdot S(n - 1, k)$ partitions in which x_n is not isolated.

Theorem.

(1) S(n,k) = 0 if k < 0 or k > n.

(2)
$$S(n,n) = 1$$
 and $S(n,0) = 0$ if $n > 0$.

(3)
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Proof. Item (1) states that there are no partitions of n into k cells if k is negative or bigger than n.

Item (2): S(n,n) = 1 since $0/1/2/\cdots/n - 1$ is the only partition of n into n cells.

If n > 0, then S(n, 0) = 0, since there can be no partition of n into 0 cells. (The union of the cells must be n.)

For Item (3), count the number of partitions of $\{x_1, x_2, \ldots, x_n\}$ into k cells by considering which cell gets x_n . There are S(n - 1, k - 1) partitions in which x_n is isolated. (That is, of the form $\cdots / \cdots / x_n$.) There are $C(k, 1) \cdot S(n - 1, k) = k \cdot S(n - 1, k)$ partitions in which x_n is not isolated. \Box

Binomial Theorem.

Binomial Theorem.

 $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$

Binomial Theorem.

 $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$

Stirling Binomial-type Theorem.

Binomial Theorem.

 $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$

Stirling Binomial-type Theorem.

$$x^n = \sum_{k=0}^n \left\{ {n \atop k} \right\} x^{\underline{k}},$$

Binomial Theorem.

 $(1+x)^n = \sum_{k=0}^n {n \choose k} x^k.$

Stirling Binomial-type Theorem.

 $\begin{aligned} x^n &= \sum_{k=0}^n \left\{ {n \atop k} \right\} x^{\underline{k}},\\ \text{where } x^{\underline{k}} &= (x)_k = x(x-1)\cdots(x-(k-1)). \end{aligned}$

$n \setminus k$	0	1	2	3	4	5	6	7	8	
0	1	0	0	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	
2	0	1	1	0	0	0	0	0	0	
3	0	1	3	1	0	0	0	0	0	
4	0	1	7	6	1	0	0	0	0	• • •
5	0	1	15	25	10	1	0	0	0	• • •
6	0	1	31	90	65	15	1	0	0	• • •
7	0	1	63	301	350	140	21	1	0	•••
8	0	1	127	966	1701	1050	266	28	1	• • •
:	:	:	:	÷	:	:	:	:	:	·.

$n \setminus k$	0	1	2	3	4	5	6	7	8	
0	1	0	0	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	
2	0	1	1	0	0	0	0	0	0	
3	0	1	3	1	0	0	0	0	0	
4	0	1	7	6	1	0	0	0	0	
5	0	1	15	25	10	1	0	0	0	
6	0	1	31	90	65	15	1	0	0	
7	0	1	63	301	350	140	21	1	0	
8	0	1	127	966	1701	1050	266	28	1	• • •
:	:	:	:	÷	:	:	÷	:	:	·

Each row is a unimodal sequence with maximum occurring for one or two consecutive values around $k \approx \frac{n}{\ln(n)}$.

$n \setminus k$	0	1	2	3	4	5	6	7	8	
0	1	0	0	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	
2	0	1	1	0	0	0	0	0	0	
3	0	1	3	1	0	0	0	0	0	
4	0	1	7	6	1	0	0	0	0	
5	0	1	15	25	10	1	0	0	0	
6	0	1	31	90	65	15	1	0	0	
7	0	1	63	301	350	140	21	1	0	
8	0	1	127	966	1701	1050	266	28	1	• • •
:	:	:	:	÷	:	:	:	:	:	·.

Each row is a unimodal sequence with maximum occurring for one or two consecutive values around $k \approx \frac{n}{\ln(n)}$.

The *n* row sum is denoted B_n and is called the *n*th **Bell number**.

The Bell numbers

The Bell numbers

Definition.

The Bell numbers

Definition. B_n is the number of partitions of n.

Definition. B_n is the number of partitions of n.

Example.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset .

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset . $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset . $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$. $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset . $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$. $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01. $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset . $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$. $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01. $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

0/1/2, 01/2, 02/1, 12/0, 012.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset . $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$. $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01. $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

0/1/2, 01/2, 02/1, 12/0, 012.

We have seen that $B_n = \sum_{k=0}^n S(n,k)$.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset . $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$. $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01. $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

0/1/2, 01/2, 02/1, 12/0, 012.

We have seen that $B_n = \sum_{k=0}^n S(n,k)$.

Another interesting relation is $B_{n+1} = \sum_{k=0}^{n} {n \choose k} \cdot B_k$.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset . $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$. $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01. $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

0/1/2, 01/2, 02/1, 12/0, 012.

We have seen that $B_n = \sum_{k=0}^n S(n,k)$.

Another interesting relation is $B_{n+1} = \sum_{k=0}^{n} {n \choose k} \cdot B_k$.

Proof. Let $X = \{x_1, x_2, \dots, x_{n+1}\}.$

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset . $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$. $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01. $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

0/1/2, 01/2, 02/1, 12/0, 012.

We have seen that $B_n = \sum_{k=0}^n S(n,k)$.

Another interesting relation is $B_{n+1} = \sum_{k=0}^{n} {n \choose k} \cdot B_k$.

Proof. Let $X = \{x_1, x_2, \dots, x_{n+1}\}$. A partition of X is determined by the choice of the cell $[x_{n+1}]$ (= a subset of X containing x_{n+1}) and a partition of $X - [x_{n+1}]$.

Definition. B_n is the number of partitions of n.

Example. $B_0 = 1$, since the only partition of $0 = \emptyset$ is \emptyset . $B_1 = 1$, since the only partition of $1 = \{0\}$ is $\{\{0\}\}$. $B_2 = 2$, since the only partitions of $2 = \{0, 1\}$ are 0/1, 01. $B_3 = 5$, since the partitions of $3 = \{0, 1, 2\}$ are

0/1/2, 01/2, 02/1, 12/0, 012.

We have seen that $B_n = \sum_{k=0}^n S(n,k)$.

Another interesting relation is $B_{n+1} = \sum_{k=0}^{n} {n \choose k} \cdot B_k$.

Proof. Let $X = \{x_1, x_2, \dots, x_{n+1}\}$. A partition of X is determined by the choice of the cell $[x_{n+1}]$ (= a subset of X containing x_{n+1}) and a partition of $X - [x_{n+1}]$. \Box

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer.

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Which of the following functions grows faster?

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

$$2^{n-1} \le B_n \le n! \le n^n \le 2^{n^2}.$$

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer. The functions are already in the appropriate order. That is,

$$2^{n-1} \le B_n \le n! \le n^n \le 2^{n^2}.$$

2ⁿ⁻¹ ≤ B_n, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer. The functions are already in the appropriate order. That is,

$$2^{n-1} \le B_n \le n! \le n^n \le 2^{n^2}.$$

2ⁿ⁻¹ ≤ B_n, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

$$2^{n-1} \le B_n \le n! \le n^n \le 2^{n^2}.$$

- 2ⁿ⁻¹ ≤ B_n, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_n \leq n!$, since we can code a partition as a permutation.

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

$$2^{n-1} \le B_n \le n! \le n^n \le 2^{n^2}.$$

- 2ⁿ⁻¹ ≤ B_n, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- $B_n \leq n!$, since we can code a partition as a permutation.

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

$$2^{n-1} \le B_n \le n! \le n^n \le 2^{n^2}.$$

- $2^{n-1} \leq B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- B_n ≤ n!, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer. The functions are already in the appropriate order. That is,

$$2^{n-1} \le B_n \le n! \le n^n \le 2^{n^2}.$$

- $2^{n-1} \leq B_n$, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- B_n ≤ n!, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

 $035/14/2 \longrightarrow 5\,3\,\underline{0}\,4\,\underline{1}\,\underline{2}$

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer. The functions are already in the appropriate order. That is,

$$2^{n-1} \le B_n \le n! \le n^n \le 2^{n^2}.$$

- 2ⁿ⁻¹ ≤ B_n, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- B_n ≤ n!, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

 $035/14/2 \longrightarrow 530412$

n! ≤ nⁿ, since the latter counts the number of functions f: n → n, while the former only counts the bijections.

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer. The functions are already in the appropriate order. That is,

$$2^{n-1} \le B_n \le n! \le n^n \le 2^{n^2}.$$

- 2ⁿ⁻¹ ≤ B_n, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- B_n ≤ n!, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

 $035/14/2 \longrightarrow 53\underline{0}4\underline{1}\underline{2}$

n! ≤ nⁿ, since the latter counts the number of functions f: n → n, while the former only counts the bijections.

$$2^{n-1}$$
, B_n , $n!$, n^n , 2^{n^2}

Answer. The functions are already in the appropriate order. That is,

$$2^{n-1} \le B_n \le n! \le n^n \le 2^{n^2}.$$

- 2ⁿ⁻¹ ≤ B_n, since the latter counts the number of all partitions of n, while the former counts only the number of partitions of n into at most 2 cells.
- B_n ≤ n!, since we can code a partition as a permutation. Linearly order cells by least element and linearly order elements of a cell by reverse natural order.

$035/14/2 \longrightarrow 5\,3\,\underline{0}\,4\,\underline{1}\,\underline{2}$

- n! ≤ nⁿ, since the latter counts the number of functions f: n → n, while the former only counts the bijections.
- nⁿ ≤ 2^{n²}, since the latter counts the number of binary relations from n to n, while the former only counts the binary relations that are functions.