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When f: A — B is surjective, then im(f) = B and ¢ = idp.
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The function f is completely determined by its coimage and its induced
function f.  Hence # surjective f’s = (# coim’s) X (#£s).
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Counting the number of induced functions

If f: A — B is surjective, | A| = n, and | B| = k, then the induced function

f: coim(f) = im(f) =B

is a bijection from one k-element set to another.
The number of such bijections is
k!

Hence, the number of surjective functions f: A — B, |A| = n, and |B| = k,
is
(#k-element partitions of A) x k!

Counting surjective functions



Stirling numbers count partitions

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is
denoted

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is
denoted {

n
I } or S(n, k),

and is called a Stirling number of the second kind.

Counting surjective functions




Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e 5(3,3) =1,

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e 5(3,3) =1,

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e S(3,3) = 1,since {{0}, {1}, {2}} is the only partition of {0, 1,2} into 3
cells.

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e S(3,3) = 1,since {{0}, {1}, {2}} is the only partition of {0, 1,2} into 3
cells. (Tuse 0/1/2 as shorthand for this partition.)

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e S(3,3) = 1,since {{0}, {1}, {2}} is the only partition of {0, 1,2} into 3
cells. (Tuse 0/1/2 as shorthand for this partition.)
° 5(3,2) =3,

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e S(3,3) = 1,since {{0}, {1}, {2}} is the only partition of {0, 1,2} into 3
cells. (Tuse 0/1/2 as shorthand for this partition.)
° 5(3,2) =3,

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e S(3,3) = 1,since {{0}, {1}, {2}} is the only partition of {0, 1,2} into 3
cells. (Tuse 0/1/2 as shorthand for this partition.)
e 5(3,2) = 3, since we have 01/2,

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e S(3,3) = 1,since {{0}, {1}, {2}} is the only partition of {0, 1,2} into 3
cells. (Tuse 0/1/2 as shorthand for this partition.)
e S(3,2) = 3, since we have 01/2, 02/1,

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e S(3,3) = 1,since {{0}, {1}, {2}} is the only partition of {0, 1,2} into 3
cells. (Tuse 0/1/2 as shorthand for this partition.)
e 5(3,2) = 3, since we have 01/2, 02/1, 12/0.

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e S(3,3) = 1,since {{0}, {1}, {2}} is the only partition of {0, 1,2} into 3
cells. (Tuse 0/1/2 as shorthand for this partition.)
e 5(3,2) = 3, since we have 01/2, 02/1, 12/0.
o S(3,1) =1,

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e S(3,3) = 1,since {{0}, {1}, {2}} is the only partition of {0, 1,2} into 3
cells. (Tuse 0/1/2 as shorthand for this partition.)
e 5(3,2) = 3, since we have 01/2, 02/1, 12/0.
o S(3,1) =1,

Counting surjective functions



Stirling numbers count partitions

Definition. The number of partitions of an n-element set into k cells is

denoted
" S(n, k)
I or n, k),

and is called a Stirling number of the second kind.

Examples.
e S(3,3) = 1,since {{0}, {1}, {2}} is the only partition of {0, 1,2} into 3
cells. (Tuse 0/1/2 as shorthand for this partition.)
e 5(3,2) = 3, since we have 01/2, 02/1, 12/0.
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S(n, k) is “dual” to C'(n, k)

The number of images of injective functions k£ — n equals the number of
k-element subsets of n, which is counted by the function C'(n, k).

The number of coimages of surjective functions n — k equals the number of
partitions of n into k cells, which is counted by the function S(n, k).

In fact, since a surjective function f: n — k is determined by choice of

coimage and choice of induced function, the number of surjective functions is
k! S(n, k).

There are many parallels between C(n, k) and S(n, k).
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Binomial Theorem.
(1+z)" =5 (Pah.

Stirling Binomial-type Theorem.
o= { i}t
where 2£ = (), = x(x — 1) --- (z — (k — 1)).
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(mefojtf2 ]3] 4[5 [6[7][8]
0 [1]0] 0] 0] 0 [ 0 JOJO]O]
I [0]/1] 0] 0] 0 [ 0 [0]0]0
2 [0[1[ 1[0 ] 0 0 0 ]0]0
3 [0[1[ 3 [ 110 00 0]0
4 [0]1] 76 1 | 0 0 ]0]0
5 [0[1][ 1525 10 1 [0 [0]0
6 |01 31 9% | 65 | 15 1 [0]0
7 [0 1] 63 [301 | 350 | 140 | 21 [ 1[0
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Each row is a unimodal sequence with maximum occurring for one or two

consecutive values around k ~ 1n7(’“n).
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Each row is a unimodal sequence with maximum occurring for one or two

consecutive values around k ~ %

The n row sum is denoted B,, and is called the nth Bell number.
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Which of the following functions grows faster?

n—1 n n?
2" B,, nl, n", 2

Answer. The functions are already in the appropriate order. That is,

1< B, <nl<n®<2".

e 2"~ ! < B, , since the latter counts the number of all partitions of n, while the
former counts only the number of partitions of n into at most 2 cells.

@ B, < nl, since we can code a partition as a permutation. Linearly order cells by
least element and linearly order elements of a cell by reverse natural order.
035/14/2 — 530412
@ n! < n", since the latter counts the number of functions f: n — n, while the
former only counts the bijections.

2 . . .
@ n™ < 2™, since the latter counts the number of binary relations from n to n,
while the former only counts the binary relations that are functions.
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