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Semantic versus Syntactic Consequence

Let Σ be a set of sentences (like the axioms for set theory, or like the empty
set of sentences).
Let P be a single sentence. Is P a consequence of Σ? (Does P “follow” from
Σ?)

Definition. P is a semantic consequence of Σ if every structure satisfying Σ
must satisfy P . (Write Σ |= P .)
P is a syntactic consequence of Σ if there is a “proof of P from Σ” (that is, a
proof which uses the statements in Σ as hypotheses, or as additional axioms).
(Write Σ ⊢ P .)

When Σ = ∅, we write “|= P ” for “P is true” and “⊢ P ” for “P is provable”.

We have already discussed how to check whether a statement P is true in a
structure (check the tables of the structural elements! play quantifier games!).
Today we will discuss provability.
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Proof

A proof of a theorem T is finite sequence of statements

S1, S2, . . . , Sn = T

which ends at T and which has the property that each statement in the list
follows from earlier statements in the list by some (accepted) law of
deduction.

First question. How is this possible? How do proofs get started? (What does
it mean for S1 to follow from earlier statements if there are no earlier
statements?)

Answer. Axioms are statements that follow from the empty collection of
preceding statements!
So, a “proof system” typically specifies its axioms and also the accepted rules
of deduction.
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What does a law of deduction look like?

The idea of a deduction (sullogismos) is developed in Prior Analytics by
Aristotle in 350 BCE. He writes A deduction is speech in which, certain
things having been supposed (= Hypotheses), something different from those
supposed (= Conclusion) results of necessity because of their being so. For an
example of a deduction is the syllogism:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

This has the structure

(∀x)(Man(x) → Mortal(x))
Man(s)
Therefore, Mortal(s)

or, more symbolically,
(∀x)(P (x) → Q(x)), P (s)

Q(s)
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What does a law of deduction look like?

More Examples.

1 (Modus Ponens) = “The mode that affirms”.

P → Q, P

Q

or
{P → Q, P} ⊢ Q.

So if your proof has the structure S1, S2, . . . , P, . . . , P → Q, . . . , Sk,
then you may continue it one step by appending Sk+1 = Q to this proof.

2 (Modus Tollens) = “The mode that denies”.

P → Q, ¬Q

¬P

So if your proof has the structure S1, S2, . . . , ¬Q, . . . , P → Q, . . . , Sk,
then you may continue it one step to get
S1, S2, . . . , ¬Q, . . . , P → Q, . . . , Sk, ¬P .
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Why do we believe that Modus Ponens is valid?

P Q P → Q P ∧ (P → Q) (P ∧ (P → Q)) → Q

0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1
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There are many valid laws of deduction

1 (Axioms) A .

2 (Hypothetical syllogism) (P →Q),(Q→R)
(P →R)

3 (Disjunctive syllogism) (P ∨Q),¬P
Q

4 (Constructive Dilemma) (P →R),(Q→S),(P ∨Q)
R∨S

5 (Destructive Dilemma) (P →R),(Q→S),(¬R∨¬S)
¬P ∨¬S
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Proof systems

Proofs take place within proof systems. A proof system specifies the accepted
axioms and the accepted laws of deduction. The desirable features of a proof
system are that it is

1 Sound. (The system cannot prove false statements.)
2 Complete. (The system can prove all true statements.)
3 Decidable. (One can recognize that a sequence of statements is a proof in

the system.)
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Silly proof systems

Consider a proof system with no axioms and no rules of deduction. This is a
sound proof system, since you can’t prove any false statements. (You also
can’t prove any true statements!)

Consider a proof system in which every statement is taken to be an axiom.
This is an unsound proof system, since you do prove false statements. In fact,
any statement T , even a contradictory statement, has a proof of length 1,
namely “T ”.

Reminder. A proof system is sound if it does not prove any false statements.
A proof system is complete if it proves every true statement.
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Gödel’s Completeness Theorem

In 1929, Kurt Gödel introduced a proof system for first-order logic. It has
finitely many types of axioms and finitely many rules of deduction.

Gödel’s Completeness Theorem. If Σ ∪ {P} consists of first-order
sentences, then Σ |= P if and only if Σ ⊢ P .

“First-order sentences” are well-formed sentences that have have finite length
and are expressible with quantifiers (∀x) and (∃y) “of the first-order”.
First-order quantifiers apply to individual elements of a structure, but not
“higher-order” entities like subsets, functions, relations, sets of sets, etc.

This result should be interpreted to mean that, at the first-order level, if a
statement is provable, then it is true, and if it is true then it is provable.

Another way to think about this is: at the first-order level, every statement has
a proof or a counterexample.
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An almost counter-example to Gödel’s Theorem

Theorem. If X is infinite, then X is infinite.

Recall that “X is infinite” means that X is not finite, which is expressible
with the set Σ = {P0, P1, P2, . . .} of sentences, where Pn is “|X| ≠ n”, or
“There is no bijection f : n → X”. We might also express this with a single
sentence Q which says

(∀n)(∀f)(¬(f : n → X is a bijection)).

Then Σ |= Q, but Σ ̸⊢ Q for any proof system requiring finite-length proofs.
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The structure of a theorem statement

Most common structure:

Theorem. H → C. (Hypothesis implies conclusion.)

There might be more than one hypothesis.
Theorem. (H1 ∧ H2) → C. (Or even (H1 ∧ · · · ∧ Hk) → C.)

The hypotheses might be “hidden” or “understood”.
Theorem. C.
(That is, C is a consequence of some unspecified set of axioms and
previously-established theorems.)

Examples.

1 Theorem. If 0 < x < 1, then x2 < x.
2 Theorem. If g is a surjective function, f is a surjective function, and g

and f are composable, then g ◦ f is a surjective function.
3 Theorem. There are infinitely many primes.
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Simple proof strategies

(Hypotheses are treated as if they were axioms, and previously-proved
theorems are also treated as if they were axioms.)

Theorem. H → C.

Proof structure #1.
H = S1, S2, . . . , Sk = C. 2 (Direct proof.)

Proof structure #2.
¬C, S2, . . . , ¬H . 2 (Proof by contraposition, or direct proof of the
contrapositive statement (¬C) → (¬H).)

Proof structure #3.
H, ¬C, S3, . . . , ⊥. 2 (Proof by contradiction.)
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Examples!

Let’s try these three forms of proof on a theorem concerning R.

Theorem. If 0 < x < 1, then x2 < x.

Proof structure #1.
Assume that 0 < x < 1. Since 0 < x, multiplication by x preserves
inequalities. Multiply x < 1 by x to obtain x2 < x. 2

Proof structure #2.
Assume that x2 ̸< x. Then x ≤ x2. Hence 0 ≤ x2 − x = x(x − 1). Hence
0 ≤ x, x − 1 or x, x − 1 ≤ 0. The first leads to 0 ≤ x − 1, or 1 ≤ x, while the
second leads to x ≤ 0. Either way, 0 < x < 1 fails. 2

Proof structure #3.
Assume that 0 < x < 1 and x2 ̸< x. The first leads to x > 0 and x − 1 < 0,
hence x(x − 1) < 0. The second leads to x2 − x ̸< 0. These two statements
contradict one another. 2
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Proofs involving quantifiers

We can use quantifier games to construct a proof strategy for theorems
involving quantifiers. Consider the following theorem, which is true for any
nonempty structure and for any formula φ(x).

Theorem. Let A be a nonempty structure and let φ(x) be a formula. If A
satisfies (∀x)φ(x), then A satisfies (∃x)φ(x).

Proof. We will give a winning strategy for ∃ in the game determined by the
sentence “(∃x)φ(x)”. In order to access the information in the hypothesis, we
first play a “side game” using the strategy for ∃ in the game determined by the
sentence “(∀x)φ(x)”.

∀ chooses some x = r in A. (This is possible, since A is nonempty.) ∀
loses. This means that φ(r) holds.

Now we are in a position to provide a winning strategy for ∃ in the game
determined by the sentence “(∃x)φ(x)”.

∃ chooses x = r. Wins, because the side game guarantees that φ(r)
holds. 2
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Proofs involving quantifiers, 2

The previous proof can be written more informally as:

Theorem. Let A be a nonempty structure and let φ(x) be a formula. If A
satisfies (∀x)φ(x), then A satisfies (∃x)φ(x).

Proof. Choose any r in A. According to the hypothesis, φ(r) holds.
Therefore, x = r is a witness to the fact that (∃x)φ(x) holds. 2

Note that, in this informal proof, I do not refer to Abelard, Eloise, or games.
Nevertheless, I DO follow the winning strategy for ∃ that was suggested by
the game played on the previous slide. I suggest that “game-theoretic
thinking” can lead you to the correct structure for proofs of statements
involving quantifiers, but it is not necessary to include this information when
you write the proof.
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