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Probability theory

Probability theory is a branch of mathematics created to analyze games of chance.

For example, the game of poker uses a deck of 52 cards. Each card has a “suit” and a
“rank” (or “number”). There are 4 suits: spades = ♠, hearts = ♡, diamonds = ♢,
clubs = ♣, 13 ranks: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, and the deck has exactly one
card of each suit and rank. A poker hand is a 5-card subset of the deck, for example
{A♢, 5♣, 7♠, 7♣, K♡}.

Question. Which poker hand is more likely, Two Pair or Three of a Kind?

“Two pair” means that the rank distribution is aa/bb/c with a, b, c distinct, while
“Three of a Kind” means that the rank distribution is aaa/b/c with a, b, c distinct.
For example, the hand

{A♢, A♣, 7♠, 7♣, K♡}

has two pair, while the hand

{A♠, 3♢, 3♣, 3♠, K♡}

has three of a kind.
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Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.

1 (Stage 1) Choose ranks (aa/bb/c):
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= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
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2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair.

Let’s count the number of poker hands that have two pair.

1 (Stage 1) Choose ranks (aa/bb/c):
(13

2
)

·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.

1 (Stage 1) Choose ranks (aa/bb/c):
(13

2
)

·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1)

Choose ranks (aa/bb/c):
(13

2
)

·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1)

Choose ranks (aa/bb/c):
(13

2
)

·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2)

Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2)

Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:

(4
2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3)

Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3)

Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind.

Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1)

Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1)

Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):

(13
1

)
·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2)

Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2)

Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:

(4
3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3)

Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3)

Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Two Pair or Three of a Kind?

Two Pair. Let’s count the number of poker hands that have two pair.
1 (Stage 1) Choose ranks (aa/bb/c):

(13
2

)
·
(11

1
)

2 (Stage 2) Choose suits:
(4

2
)

·
(4

2
)

·
(4

1
)

3 (Stage 3) Total =
(13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
)

= 123552 hands

Three of a Kind. Let’s count the number of poker hands that have three of a
kind.

1 (Stage 1) Choose ranks (aaa/b/c):
(13

1
)

·
(12

2
)

2 (Stage 2) Choose suits:
(4

3
)

·
(4

1
)

·
(4

1
)

3 (Stage 3) Total =
(13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
)

= 54912 hands

If we assume that all hands are equally likely and that hands are chosen at
random, then the probability of receiving Two Pair is 2.25 times more likely
than the probability of receiving Three of a Kind.

Discrete Probability Theory 3 / 8



Mathematical formalization: Probability space

Definitions.

1 A sample space is a set, often written Ω (= Omega), which we think of as the
set of possible outcomes of a “random process” or “experiment”. Elements of Ω
are called outcomes.

2 An event is a subset of the sample space. A singleton event {a} is called a
simple event (or an elementary event or an atomic event). A non-simple event
is called a compound event. The event space is some set of events, often
written F , which contains Ω and is closed under complementation and
countable union. (Thus, F ⊆ P(Ω), but it is not always true that F = P(Ω).)

3 A probability function is a function P : F → R that satisfies the Kolmogorov
Axioms.

1 P (E) ≥ 0 for all E ∈ F .
2 P (E) ≤ 1 for all E ∈ F .
3 P (

⋃∞
i=0 Ei) =

∑∞
i=0 P (Ei) if the events are pairwise disjoint.

4 A probability space is a triple (Ω, F , P ) where Ω, F , P are as above. It is
discrete if Ω is countable. Often “discrete” is even taken to mean “Ω is finite”.
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Examples

Example 1. To study the random process of flipping a fair coin once, we
create and study a probability space (Ω, F , P ) where

1 Ω = {H, T}.
2 F = P(Ω) = {∅, {H}, {T}, {H, T}}.
3 P (∅) = 0, P ({H}) = 1/2, P ({T}) = 1/2, P ({H, T}) = 1.

Example 2. To study the random process of choosing a poker hand under the
assumption that all hands are equally likely, we create and study a probability
space (Ω, F , P ) where

1 Ω = set of all 5-card poker hands.
2 F = P(Ω).

3 P (2 Pair) =
((13

2
)

·
(11

1
)

·
(4

2
)

·
(4

2
)

·
(4

1
))

/
(52

5
)

= 0.047539016,

P (3 of a Kind) =
((13

1
)

·
(12

2
)

·
(4

3
)

·
(4

1
)

·
(4

1
))

/
(52

5
)

= 0.021128451,
ETC for other sets of hands.
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Classical Discrete Probability Theory

Example 3. Imagine that we want to study a random process where different
outcomes need not be equally likely. For example, suppose that we want to
study a random process of flipping an UNfair coin once where the unfair coin
that we have returns H twice as often as it returns T . For this, we might create
and study a probability space (Ω, F , P ) where

1 Ω = {H, T}.
2 F = P(Ω) = {∅, {H}, {T}, {H, T}}.
3 P (∅) = 0, P ({H}) = 2/3, P ({T}) = 1/3, P ({H, T}) = 1.

To separate out examples like the one above from the ones we will study, we
introduce the phrase classical discrete probability theory, which is the
subject that studies probability theory under the assumptions that Ω is finite
and all outcomes are equally likely. In classical discrete probability theory, if
E ∈ F is an event, then P (E) = |E|/|Ω|. We often write this as

The probability of an event E is the number of successes
divided by the number of possible outcomes.
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Exercises

1 In poker, a “straight” looks like this:

3♢, 4♠, 5♢, 6♣, 7♡.

(Ranks are consecutive.)
A “flush” looks like this:

A♡, 5♡, 6♡, J♡, K♡.

(Suits are equal.)
Which is more likely, a straight or a flush?
What is the classical probability for each of these types of hands?

2 What is the probability that a poker hand has the same number of hearts
and diamonds?
What is the probability that a poker hand has more hearts than diamonds?

3 What is the probability that if you flip a fair coin six times you will get 3
or more consecutive heads?
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