# The Natural Numbers

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

Example.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

If x is a set, then S(x) is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

If x is a set, then S(x) is a set. Here is why:

• Assume that *x* is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

If x is a set, then S(x) is a set. Here is why:

• Assume that *x* is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S(\{A,B\}) = \{A,B\} \cup \{\{A,B\}\} = \{A,B,\{A,B\}\}.$$

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set. (Pair x with itself.)

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set. (Pair x with itself.)
- **1** By the Axiom of Pairing,  $\{x, \{x\}\}$  is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set. (Pair x with itself.)
- **1** By the Axiom of Pairing,  $\{x, \{x\}\}$  is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set. (Pair x with itself.)
- **3** By the Axiom of Pairing,  $\{x, \{x\}\}$  is a set.
- **1** By the Axiom of Union,  $\bigcup \{x, \{x\}\} = x \cup \{x\}$  is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set. (Pair x with itself.)
- **3** By the Axiom of Pairing,  $\{x, \{x\}\}$  is a set.
- **3** By the Axiom of Union,  $\bigcup \{x, \{x\}\} = x \cup \{x\}$  is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set. (Pair x with itself.)
- **3** By the Axiom of Pairing,  $\{x, \{x\}\}$  is a set.
- **3** By the Axiom of Union,  $\bigcup \{x, \{x\}\} = x \cup \{x\}$  is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set. (Pair x with itself.)
- **3** By the Axiom of Pairing,  $\{x, \{x\}\}$  is a set.
- **3** By the Axiom of Union,  $\bigcup \{x, \{x\}\} = x \cup \{x\}$  is a set.

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

If x is a set, then S(x) is a set. Here is why:

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set. (Pair x with itself.)
- **3** By the Axiom of Pairing,  $\{x, \{x\}\}$  is a set.
- **1** By the Axiom of Union,  $\bigcup \{x, \{x\}\} = x \cup \{x\}$  is a set.

We call the successor function a "class function" because it can be described by a formula:

Recall that the successor function is the function  $S(x) = x \cup \{x\}$ .

**Example.** 
$$S({A,B}) = {A,B} \cup {\{A,B\}\}} = {A,B,\{A,B\}\}}.$$

If x is a set, then S(x) is a set. Here is why:

- Assume that *x* is a set.
- ② By the Axiom of Pairing,  $\{x\}$  is a set. (Pair x with itself.)
- **3** By the Axiom of Pairing,  $\{x, \{x\}\}$  is a set.
- **3** By the Axiom of Union,  $\bigcup \{x, \{x\}\} = x \cup \{x\}$  is a set.

We call the successor function a "class function" because it can be described by a formula:

$$\varphi_{y=S(x)}(x,y): (\forall z)((z \in y) \leftrightarrow ((z \in x) \lor (z = x))).$$

The Natural Numbers

A set *I* is called "inductive" if

 $0 \in I$ , and

A set *I* is called "inductive" if

 $0 \in I$ , and

- $0 \in I$ , and
- ② *I* is closed under successor.

- $0 \in I$ , and
- ② *I* is closed under successor.

- $0 \in I$ , and
- ② *I* is closed under successor. This means

- $0 \in I$ , and
- 2 I is closed under successor. This means

$$x \in I$$
 implies  $S(x) \in I$ .

A set *I* is called "inductive" if

- $0 \in I$ , and
- ② *I* is closed under successor. This means

$$x \in I$$
 implies  $S(x) \in I$ .

By the first property of this definition,  $0 \in I$ .

A set *I* is called "inductive" if

- $0 \in I$ , and
- ② *I* is closed under successor. This means

$$x \in I$$
 implies  $S(x) \in I$ .

By the first property of this definition,  $0 \in I$ . By the second property,  $1 \in I$ .

A set I is called "inductive" if

- $0 \in I$ , and
- ② *I* is closed under successor. This means

$$x \in I$$
 implies  $S(x) \in I$ .

By the first property of this definition,  $0 \in I$ .

By the second property,  $1 \in I$ .  $(((0 \in I) \to (S(0) \in I)))$ 

A set I is called "inductive" if

- $0 \in I$ , and
- 2 *I* is closed under successor. This means

$$x \in I$$
 implies  $S(x) \in I$ .

By the first property of this definition,  $0 \in I$ . By the second property,  $1 \in I$ .  $(((0 \in I) \to (S(0) \in I)))$ By the second property,  $2 \in I$ ,

A set I is called "inductive" if

- $0 \in I$ , and
- ② *I* is closed under successor. This means

$$x \in I$$
 implies  $S(x) \in I$ .

By the first property of this definition,  $0 \in I$ . By the second property,  $1 \in I$ .  $(((0 \in I) \to (S(0) \in I)))$ By the second property,  $2 \in I$ , and so on.

A set I is called "inductive" if

- $0 \in I$ , and
- ② *I* is closed under successor. This means

$$x \in I$$
 implies  $S(x) \in I$ .

By the first property of this definition,  $0 \in I$ .

By the second property,  $1 \in I$ .  $(((0 \in I) \to (S(0) \in I)))$ 

By the second property,  $2 \in I$ , and so on.

So a typical inductive set looks like

A set I is called "inductive" if

- $0 \in I$ , and
- ② *I* is closed under successor. This means

$$x \in I$$
 implies  $S(x) \in I$ .

By the first property of this definition,  $0 \in I$ .

By the second property,  $1 \in I$ .  $(((0 \in I) \to (S(0) \in I)))$ 

By the second property,  $2 \in I$ , and so on.

So a typical inductive set looks like  $I = \{0, 1, 2, \dots, (extra stuff)\}.$ 

A set I is called "inductive" if

- $0 \in I$ , and
- 2 *I* is closed under successor. This means

$$x \in I$$
 implies  $S(x) \in I$ .

By the first property of this definition,  $0 \in I$ .

By the second property,  $1 \in I$ .  $(((0 \in I) \to (S(0) \in I)))$ 

By the second property,  $2 \in I$ , and so on.

So a typical inductive set looks like  $I = \{0, 1, 2, \dots, (\text{extra stuff})\}$ . More concretely,

#### Inductive sets

A set I is called "inductive" if

- $0 \in I$ , and
- ② *I* is closed under successor. This means

$$x \in I$$
 implies  $S(x) \in I$ .

By the first property of this definition,  $0 \in I$ .

By the second property,  $1 \in I$ .  $(((0 \in I) \to (S(0) \in I)))$ 

By the second property,  $2 \in I$ , and so on.

So a typical inductive set looks like  $I = \{0, 1, 2, \dots, (\text{extra stuff})\}$ . More concretely,

$$I = \{0, 1, 2, \dots, u, S(u), SS(u), \dots, v, S(v), SS(v), SSS(v), \dots\}.$$

There is a formula  $\varphi_{\text{inductive}}(x)$  that holds if x is inductive and fails if x is not inductive.

There is a formula  $\varphi_{\text{inductive}}(x)$  that holds if x is inductive and fails if x is not inductive.

$$\varphi_{\text{inductive}}(x): \quad (0 \in x) \land (\forall y)((y \in x) \rightarrow (S(y) \in x)).$$

There is a formula  $\varphi_{\text{inductive}}(x)$  that holds if x is inductive and fails if x is not inductive.

$$\varphi_{\text{inductive}}(x): \quad (0 \in x) \land (\forall y)((y \in x) \rightarrow (S(y) \in x)).$$

We want to define  $\mathbb{N}$  to be the intersection of all inductive sets.

There is a formula  $\varphi_{\text{inductive}}(x)$  that holds if x is inductive and fails if x is not inductive.

$$\varphi_{\text{inductive}}(x): \quad (0 \in x) \land (\forall y)((y \in x) \rightarrow (S(y) \in x)).$$

We want to define  $\mathbb{N}$  to be the intersection of all inductive sets. This is the set of elements common to all inductive sets.

There is a formula  $\varphi_{\text{inductive}}(x)$  that holds if x is inductive and fails if x is not inductive.

$$\varphi_{\text{inductive}}(x): \quad (0 \in x) \land (\forall y)((y \in x) \rightarrow (S(y) \in x)).$$

We want to define  $\mathbb{N}$  to be the intersection of all inductive sets. This is the set of elements common to all inductive sets. This is the intersection of all sets that satisfy the formula  $\varphi_{\text{inductive}}(x)$ :

There is a formula  $\varphi_{\text{inductive}}(x)$  that holds if x is inductive and fails if x is not inductive.

$$\varphi_{\text{inductive}}(x): \quad (0 \in x) \land (\forall y)((y \in x) \rightarrow (S(y) \in x)).$$

We want to define  $\mathbb{N}$  to be the intersection of all inductive sets. This is the set of elements common to all inductive sets. This is the intersection of all sets that satisfy the formula  $\varphi_{\text{inductive}}(x)$ :

$$\varphi_{\mathbb{N}}(x): (\forall y)((y \in x) \leftrightarrow (\forall z)(\varphi_{\text{inductive}}(z) \rightarrow (y \in z)))$$

This is a fancy way to say

There is a formula  $\varphi_{\text{inductive}}(x)$  that holds if x is inductive and fails if x is not inductive.

$$\varphi_{\text{inductive}}(x): \quad (0 \in x) \land (\forall y)((y \in x) \rightarrow (S(y) \in x)).$$

We want to define  $\mathbb{N}$  to be the intersection of all inductive sets. This is the set of elements common to all inductive sets. This is the intersection of all sets that satisfy the formula  $\varphi_{\text{inductive}}(x)$ :

$$\varphi_{\mathbb{N}}(x): (\forall y)((y \in x) \leftrightarrow (\forall z)(\varphi_{\text{inductive}}(z) \rightarrow (y \in z)))$$

This is a fancy way to say

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I.$$

There is a formula  $\varphi_{\text{inductive}}(x)$  that holds if x is inductive and fails if x is not inductive.

$$\varphi_{\text{inductive}}(x): \quad (0 \in x) \land (\forall y)((y \in x) \rightarrow (S(y) \in x)).$$

We want to define  $\mathbb{N}$  to be the intersection of all inductive sets. This is the set of elements common to all inductive sets. This is the intersection of all sets that satisfy the formula  $\varphi_{\text{inductive}}(x)$ :

$$\varphi_{\mathbb{N}}(x): (\forall y)((y \in x) \leftrightarrow (\forall z)(\varphi_{\text{inductive}}(z) \rightarrow (y \in z)))$$

This is a fancy way to say

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I.$$

This is a "legal intersection" provided there is at least one inductive set.

There is a formula  $\varphi_{\text{inductive}}(x)$  that holds if x is inductive and fails if x is not inductive.

$$\varphi_{\text{inductive}}(x): (0 \in x) \land (\forall y)((y \in x) \rightarrow (S(y) \in x)).$$

We want to define  $\mathbb{N}$  to be the intersection of all inductive sets. This is the set of elements common to all inductive sets. This is the intersection of all sets that satisfy the formula  $\varphi_{\text{inductive}}(x)$ :

$$\varphi_{\mathbb{N}}(x): (\forall y)((y \in x) \leftrightarrow (\forall z)(\varphi_{\text{inductive}}(z) \rightarrow (y \in z)))$$

This is a fancy way to say

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I.$$

This is a "legal intersection" provided there is at least one inductive set. (We can only intersect nonempty collections.)

# The Axiom of Infinity

# The Axiom of Infinity

There is an inductive set.

# The Axiom of Infinity

There is an inductive set.

This axiom guarantees that  $\mathbb{N}$  exists.

There are different inductive sets, like

There are different inductive sets, like

$$\{0, 1, 2, \dots, u, S(u), SS(u), \dots\}$$

There are different inductive sets, like

$$\{0, 1, 2, \dots, u, S(u), SS(u), \dots\}$$

and

There are different inductive sets, like

$$\{0, 1, 2, \dots, u, S(u), SS(u), \dots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

There are different inductive sets, like

$$\{0, 1, 2, \dots, u, S(u), SS(u), \dots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

There are different inductive sets, like

$$\{0, 1, 2, \dots, u, S(u), SS(u), \dots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

There are different inductive sets, like

$$\{0, 1, 2, \dots, u, S(u), SS(u), \dots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

(no mysterious "extra stuff" at the end).

There are different inductive sets, like

$$\{0, 1, 2, \dots, u, S(u), SS(u), \dots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

(no mysterious "extra stuff" at the end).

Question:

There are different inductive sets, like

$$\{0, 1, 2, \dots, u, S(u), SS(u), \dots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

(no mysterious "extra stuff" at the end).

There are different inductive sets, like

$$\{0, 1, 2, \ldots, u, S(u), SS(u), \ldots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

(no mysterious "extra stuff" at the end).

There are different inductive sets, like

$$\{0, 1, 2, \ldots, u, S(u), SS(u), \ldots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

(no mysterious "extra stuff" at the end).

There are different inductive sets, like

$$\{0, 1, 2, \ldots, u, S(u), SS(u), \ldots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

(no mysterious "extra stuff" at the end).

There are different inductive sets, like

$$\{0, 1, 2, \ldots, u, S(u), SS(u), \ldots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

(no mysterious "extra stuff" at the end).

There are different inductive sets, like

$$\{0, 1, 2, \ldots, u, S(u), SS(u), \ldots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

(no mysterious "extra stuff" at the end).

There are different inductive sets, like

$$\{0, 1, 2, \ldots, u, S(u), SS(u), \ldots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

(no mysterious "extra stuff" at the end).

There are different inductive sets, like

$$\{0, 1, 2, \ldots, u, S(u), SS(u), \ldots\}$$

and

$$\{0, 1, 2, \dots, v, S(v), SS(v), \dots, w, S(w), \dots\},\$$

and the hope is that if we intersect all of them we will be left with only

$$\mathbb{N} = \bigcap_{I \text{ inductive}} I = \{0, 1, 2, \ldots\}$$

(no mysterious "extra stuff" at the end).

### $\mathbb{N}$ is inductive

Theorem.

**Theorem.**  $\mathbb{N}$  is inductive.

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set.

**Theorem.**  $\mathbb{N}$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb{N}$  is an inductive set that is a subset of every other inductive set.)

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

Proof.

**Theorem.**  $\mathbb{N}$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb{N}$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive}} I$ .

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

#### Claim 1.

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I,

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive }} I$ 

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

Claim 2.

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

**Claim 2.**  $\mathbb{N}$  is closed under successor.

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

**Claim 2.**  $\mathbb{N}$  is closed under successor.

Reason:

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

**Claim 2.**  $\mathbb{N}$  is closed under successor.

Reason: Choose  $x \in \mathbb{N}$ 

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

Claim 2.  $\mathbb{N}$  is closed under successor.

Reason: Choose  $x \in \mathbb{N} = \bigcap_{I \text{ inductive }} I$ .

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

Claim 2.  $\mathbb{N}$  is closed under successor.

Reason: Choose  $x \in \mathbb{N} = \bigcap_{I \text{ inductive }} I$ . Then  $x \in I$  for every inductive I.

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

Claim 2.  $\mathbb{N}$  is closed under successor.

Reason: Choose  $x \in \mathbb{N} = \bigcap_{I \text{ inductive }} I$ . Then  $x \in I$  for every inductive I. Hence  $S(x) \in I$  for every inductive I.

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

Claim 2.  $\mathbb{N}$  is closed under successor.

Reason: Choose  $x \in \mathbb{N} = \bigcap_{I \text{ inductive }} I$ . Then  $x \in I$  for every inductive I. Hence  $S(x) \in I$  for every inductive I. Hence  $S(x) \in \bigcap_{I \text{ inductive }} I$ 

The Natural Numbers

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

Claim 2.  $\mathbb{N}$  is closed under successor.

Reason: Choose  $x \in \mathbb{N} = \bigcap_{I \text{ inductive }} I$ . Then  $x \in I$  for every inductive I. Hence  $S(x) \in I$  for every inductive I. Hence  $S(x) \in \bigcap_{I \text{ inductive }} I = \mathbb{N}$ .

**Theorem.**  $\mathbb N$  is inductive. (So it is the "least" inductive set. This means that  $\mathbb N$  is an inductive set that is a subset of every other inductive set.)

*Proof.* Recall that we have defined  $\mathbb{N}$  so that it is the intersection of all inductive sets, say  $\mathbb{N} = \bigcap_{I \text{ inductive }} I$ . To prove that  $\mathbb{N}$  is inductive, we must show that it contains 0 and it is closed under successor.

Claim 1.  $0 \in \mathbb{N}$ .

Reason:  $0 \in I$  for every inductive I, so  $0 \in \bigcap_{I \text{ inductive}} I = \mathbb{N}$ .

Claim 2.  $\mathbb{N}$  is closed under successor.

Reason: Choose  $x \in \mathbb{N} = \bigcap_{I \text{ inductive }} I$ . Then  $x \in I$  for every inductive I. Hence  $S(x) \in I$  for every inductive I. Hence  $S(x) \in \bigcap_{I \text{ inductive }} I = \mathbb{N}$ .  $\square$