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The successor function

Recall that the successor function is the function S(x) = x ∪ {x}.

Example. S({A,B}) = {A,B} ∪ {{A,B}} = {A,B, {A,B}}.

If x is a set, then S(x) is a set. Here is why:

1 Assume that x is a set.
2 By the Axiom of Pairing, {x} is a set. (Pair x with itself.)
3 By the Axiom of Pairing, {x, {x}} is a set.
4 By the Axiom of Union,

⋃
{x, {x}} = x ∪ {x} is a set.

5 Thus S(x) = x ∪ {x} is a set.

We call the successor function a “class function” because it can be described
by a formula:

ϕy=S(x)(x, y) : (∀z)((z ∈ y) ↔ ((z ∈ x) ∨ (z = x))).
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Inductive sets

A set I is called “inductive” if

1 0 ∈ I, and
2 I is closed under successor. This means

x ∈ I implies S(x) ∈ I.

By the first property of this definition, 0 ∈ I.
By the second property, 1 ∈ I. (((0 ∈ I) → (S(0) ∈ I)))
By the second property, 2 ∈ I, and so on.

So a typical inductive set looks like I = {0, 1, 2, . . . , (extra stuff)}.
More concretely,

I = {0, 1, 2, . . . , u, S(u), SS(u), . . . , v, S(v), SS(v), SSS(v), . . .}.
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Definition of N

There is a formula ϕinductive(x) that holds if x is inductive and fails if x is not
inductive.

ϕinductive(x) : (0 ∈ x) ∧ (∀y)((y ∈ x) → (S(y) ∈ x)).

We want to define N to be the intersection of all inductive sets. This is the set
of elements common to all inductive sets. This is the intersection of all sets
that satisfy the formula ϕinductive(x):

ϕN(x) : (∀y)((y ∈ x) ↔ (∀z)(ϕinductive(z) → (y ∈ z)))

This is a fancy way to say
N =

⋂
I inductive

I.

This is a “legal intersection” provided there is at least one inductive set. (We
can only intersect nonempty collections.)
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The Axiom of Infinity

There is an inductive set.

This axiom guarantees that N exists.
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Why did we define N this way?

There are different inductive sets, like

{0, 1, 2, . . . , u, S(u), SS(u), . . .}

and
{0, 1, 2, . . . , v, S(v), SS(v), . . . ,w, S(w), . . .},

and the hope is that if we intersect all of them we will be left with only

N =
⋂

I inductive

I = {0, 1, 2, . . .}

(no mysterious “extra stuff” at the end).

Question: Which of these is the definition of N?

1 N = {0, 1, 2, . . .}. 7

2 N is the intersection of all inductive sets. 3
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N is inductive

Theorem. N is inductive. (So it is the “least” inductive set. This means that N
is an inductive set that is a subset of every other inductive set.)

Proof. Recall that we have defined N so that it is the intersection of all
inductive sets, say N =

⋂
I inductive I. To prove that N is inductive, we must

show that it contains 0 and it is closed under successor.

Claim 1. 0 ∈ N.
Reason: 0 ∈ I for every inductive I, so 0 ∈

⋂
I inductive I = N.

Claim 2. N is closed under successor.
Reason: Choose x ∈ N =

⋂
I inductive I. Then x ∈ I for every inductive I.

Hence S(x) ∈ I for every inductive I. Hence S(x) ∈
⋂

I inductive I = N. 2
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