


n-choose-k

My ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).

My ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
(Formula:

My ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
n

(Formula: (}) = m)

My ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).

(Formula: (}) = ﬁlk),)

Theorem.

My ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
!
(Formula: (}) = 7/!@!(:#1;)!')

Theorem.
(@) (3) =0ifk>nork <0.

My ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
!
(Formula: (}) = 7/!@!(:#1;)!')

Theorem.
(@) (3) =0ifk>nork <0.

My ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
!
(Formula: (}) = 7/!@!(:#1;)!')

Theorem.
(@) (3) =0ifk>nork <0.

® (5) =) =1

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
!
(Formula: (}) = 7/!@!(:#1;)!')

Theorem.
(@) (3) =0ifk>nork <0.

® (5) =) =1

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
!
(Formula: (}) = 7/!@!(:#1;)!')

Theorem.
(@) (3) =0ifk>nork <0.

® (5) =) =1

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
!
(Formula: (}) = 7/!@!(:#1;)!')

Theorem.
(@) (3) =0ifk>nork <0.

® (5) =) =1

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
!
(Formula: (}) = 7/!@!(:#1;)!')

Theorem.
(@) (3) =0ifk>nork <0.

0 () =) =1
(c) (Pascal’s Identity)

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
!
(Formula: (}) = 7/!@!(:#1;)!')

Theorem.
(@) (3) =0ifk>nork <0.

®) ) =() =1
(c) (Pascal’s Identity) (Zﬁ) = (i) + (x30)-

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).

(Formula: (}) = ﬁlk),)

Theorem.
(@) (3) =0ifk>nork <0.

®) ) =() =1
(c) (Pascal’s Identity) (Zﬁ) = (i) + (x30)-

“Combinatorial” Proof of (c).

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
!
(Formula: (}) = 7/!@!(7?#1;)!')

Theorem.

(@) (3) =0ifk>nork <0.

0 () =) =1

(c) (Pascal’s Identity) (Zﬁ) = (1) + (:51)-
“Combinatorial” Proof of (c).

Count the number of (k + 1)-element subsets of {x1, z2,...,Zn+1} in two
different ways:

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
!
(Formula: (}) = 7/!@!(7?#1;)!')

Theorem.

(@) (3) =0ifk>nork <0.

0 () =) =1

(c) (Pascal’s Identity) (Zﬁ) = (1) + (:51)-
“Combinatorial” Proof of (c).

Count the number of (k + 1)-element subsets of {x1, z2,...,Zn+1} in two
different ways:

Way 1:

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
(Formula: (}) = ﬁlk),)

Theorem.

(@) (3) =0ifk>nork <0.

0 () =) =1

(c) (Pascal’s Identity) (Zﬁ) = (1) + (:51)-

“Combinatorial” Proof of (c).

Count the number of (k + 1)-element subsets of {x1, z2,...,Zn+1} in two
different ways:

Way 1: (Zﬁ)

Sy ) (Y 20



n-choose-k
n

Definition. The number of k-element subsets of an n-element set is (7).
(Formula: (}) = ﬁlk),)
Theorem.
(@) (3) =0ifk>nork <0.
) (o) =() =1L
(c) (Pascal’s Identity) (Zﬁ) = (1) + (:51)-
“Combinatorial” Proof of (c).
Count the number of (k + 1)-element subsets of {x1, z2,...,Zn+1} in two

different ways:

Way 1: (Zﬁ)

Way 2:

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).

(Formula: (}) = ﬁlk),)

Theorem.

(@) (3) =0ifk>nork <0.

) (o) =() =1L

(c) (Pascal’s Identity) (Zﬁ) = (1) + (:51)-

“Combinatorial” Proof of (c).
Count the number of (k + 1)-element subsets of {x1, z2,...,Zn+1} in two
different ways:

Way 1: (Zﬁ)

Way 2: Add the number of (k + 1)-element subsets that contain x,,11 to the
number of (k + 1)-element subsets that do not contain z,,41: (3,) + (,.//1)-

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).

(Formula: (}) = ﬁlk),)

Theorem.

(@) (3) =0ifk>nork <0.

) (o) =() =1L

(c) (Pascal’s Identity) (Zﬁ) = (1) + (:51)-

“Combinatorial” Proof of (c).
Count the number of (k + 1)-element subsets of {x1, z2,...,Zn+1} in two
different ways:

Way 1: (Zﬁ)

Way 2: Add the number of (k + 1)-element subsets that contain x,,11 to the
number of (k + 1)-element subsets that do not contain z,,41: (}) + (/). O

Sy ) (Y 20



n-choose-k

Definition. The number of k-element subsets of an n-element set is (7).
(Formula: (}) = ﬁlk),)

Theorem.

(@) (3) =0ifk>nork <0.

0 () =) =1

(c) (Pascal’s Identity) (Zﬁ) = (1) + (:51)-

“Combinatorial” Proof of (c).

Count the number of (k + 1)-element subsets of {x1, z2,...,Zn+1} in two
different ways:

. (1
Way 1: (} +1)‘
Way 2: Add the number of (k + 1)-element subsets that contain x,,11 to the
number of (k + 1)-element subsets that do not contain z,,41: (}) + (/). O

For an alternative proof, use the formula at the top of the page.
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Pascal’s Triangle as a triangle

1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

Theorem. The nth row of Pascal’s triangle is a symmetric, unimodal
sequence that sums to 2".

Symmetric means (Z) = (nf k) True, since ... Combinatorial proof?

Sums to 2", since ... Combinatorial proof?

. . K (n—k)! " _
Unimodal, since 1 < (,7,)/(}}) = m = Tﬁ & k<l
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The Binomial Theorem

Theorem.
(x + y)n — (g)xnyo + (?)xn_lyl + (g)xn—Qy NS (n)xoyn (*)
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Proof. (Induction on n.)
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First compute (x + y + 2)*.

4 4 4 4
=1 —4 = =
<4, 0, 0> ’ <3, 1, 0) ’ (27 2, O) 6, (2, 1, 1) 12,

(r+y+2)* =zt4yt+ 24
+a4(23y + 232 + 3 + y3z + 2B + 23y)
F6(a2y2 + 2222 +1222)
+12(2%yz + 2y?z + 2y2?).

SO

Now substitute [z/1], [y/t], [2/t?]:
(1+t+t)* =14+t4+18

+At+ 2+ 13+ 15 10 +¢7)
+6(t% + t* + %)
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Example. (1 + ¢+ t?)*=?

First compute (x + y + 2)*.

4 4 4 4
<4,0,0> ’ <3, 1,0) ’ (2,2,0) 6 (2, 1, 1) 12,

(r4+y+2)?t =at+yt4+2?
+a4(23y + 232 + 3 + y3z + 2B + 23y)
F6(a2y2 + 2222 +1222)
+12(2%yz + 2y?z + 2y2?).

SO

Now substitute [z/1], [y/t], [2/t?]:

(1+t+t2)* =14+t4 4+
+At+ 2+ 13+ 15 10 +¢7)
+ 6(t% + t* + %)
+ 12(¢3 + t* + 85)
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Example. (1 + ¢+ t?)*=?

First compute (x + y + 2)*.

4 4 4 4
<4, 0, 0> ’ <3, 1, 0) ’ (27 2, O) 6 (2, 1, 1) 12,

(r4+y+2)?t =at+yt4+2?
+a4(23y + 232 + 3 + y3z + 2B + 23y)
F6(a2y2 + 2222 +1222)
+12(2%yz + 2y?z + 2y2?).

SO

Now substitute [z/1], [y/t], [2/t?]:

(1+t+t2)* =14+t4 4+
+At+ 2+ 13+ 15 10 +¢7)
+ 6(t% + t* + %)
+ 12(¢3 + t* + 15)
=1+ 4t + 10t2 + 16t3 + 17t* + 16t° + 105 + 4¢7 4 8.
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Definition. (informal) A multiset is a set with repetitions allowed, like
{1,1,1,2,3,3}
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Definition. (informal) A multiset is a set with repetitions allowed, like
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[(more formally) A multiset is an ordered pair (.S, f) where S is a set and
f:+ S — Nis a multiplicity function.]
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[(more formally) A multiset is an ordered pair (.S, f) where S is a set and
f:+ S — Nis a multiplicity function.]

Theorem. The number of k-element multisubsets of an n-element set is
("1, (We write () or MC(n, k) for this quantity)
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n-multichoose-k

Definition. (informal) A multiset is a set with repetitions allowed, like
{1,1,1,2, 3,3} (Order does not matter, only multiplicity.)

[(more formally) A multiset is an ordered pair (.S, f) where S is a set and
f:+ S — Nis a multiplicity function.]

Theorem. The number of k-element multisubsets of an n-element set is
("1, (We write () or MC(n, k) for this quantity)

“Stars and Bars” Proof.
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Counting problems where multichoose numbers show up

@ How many k-element multisubsets of an n-element set are there? ((Z))

© How many ways are there to distribute k identical objects to n distinct
recipients if each recipient may receive no objects, one object, or
multiple objects?
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