$\binom{n}{k}$, $\binom{n}{k_1,\dots,k_r}$, $\binom{n}{k}$

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$.

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula:

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

(a)
$$\binom{n}{k} = 0$$
 if $k > n$ or $k < 0$.

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

(a)
$$\binom{n}{k} = 0$$
 if $k > n$ or $k < 0$.

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.
- (c) (Pascal's Identity)

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.
- (c) (Pascal's Identity) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

Theorem.

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.
- (c) (Pascal's Identity) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

"Combinatorial" Proof of (c).

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

Theorem.

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.
- (c) (Pascal's Identity) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

"Combinatorial" $Proof \ of \ (c)$.

Count the number of (k+1)-element subsets of $\{x_1, x_2, \dots, x_{n+1}\}$ in two different ways:

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

Theorem.

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.
- (c) (Pascal's Identity) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

"Combinatorial" $Proof \ of \ (c)$.

Count the number of (k+1)-element subsets of $\{x_1, x_2, \dots, x_{n+1}\}$ in two different ways:

Way 1:

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

Theorem.

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.
- (c) (Pascal's Identity) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

"Combinatorial" Proof of (c).

Count the number of (k+1)-element subsets of $\{x_1, x_2, \dots, x_{n+1}\}$ in two different ways:

Way 1: $\binom{n+1}{k+1}$.

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

Theorem.

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.
- (c) (Pascal's Identity) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

"Combinatorial" Proof of (c).

Count the number of (k+1)-element subsets of $\{x_1, x_2, \dots, x_{n+1}\}$ in two different ways:

Way 1: $\binom{n+1}{k+1}$.

Way 2:

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

Theorem.

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.
- (c) (Pascal's Identity) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

"Combinatorial" Proof of (c).

Count the number of (k+1)-element subsets of $\{x_1, x_2, \dots, x_{n+1}\}$ in two different ways:

Way 1: $\binom{n+1}{k+1}$.

Way 2: Add the number of (k+1)-element subsets that contain x_{n+1} to the number of (k+1)-element subsets that do not contain x_{n+1} : $\binom{n}{k} + \binom{n}{k+1}$.

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

Theorem.

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.
- (c) (Pascal's Identity) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

"Combinatorial" Proof of (c).

Count the number of (k+1)-element subsets of $\{x_1, x_2, \dots, x_{n+1}\}$ in two different ways:

Way 1: $\binom{n+1}{k+1}$.

Way 2: Add the number of (k+1)-element subsets that contain x_{n+1} to the number of (k+1)-element subsets that do not contain x_{n+1} : $\binom{n}{k} + \binom{n}{k+1}$. \square

Definition. The number of k-element subsets of an n-element set is $\binom{n}{k}$. (Formula: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.)

Theorem.

- (a) $\binom{n}{k} = 0$ if k > n or k < 0.
- (b) $\binom{n}{0} = \binom{n}{n} = 1$.
- (c) (Pascal's Identity) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

"Combinatorial" Proof of (c).

Count the number of (k+1)-element subsets of $\{x_1, x_2, \dots, x_{n+1}\}$ in two different ways:

Way 1: $\binom{n+1}{k+1}$.

Way 2: Add the number of (k+1)-element subsets that contain x_{n+1} to the number of (k+1)-element subsets that do not contain x_{n+1} : $\binom{n}{k} + \binom{n}{k+1}$. \square

For an alternative proof, use the formula at the top of the page.

$$\binom{n}{k}$$
, $\binom{n}{k_1,\ldots,k_r}$, $\binom{n}{k}$

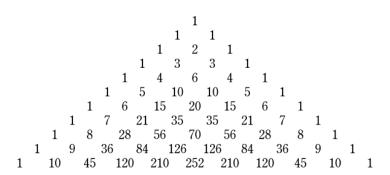
Pascal's Triangle as an $n \times k$ table

Pascal's Triangle as an $n \times k$ table

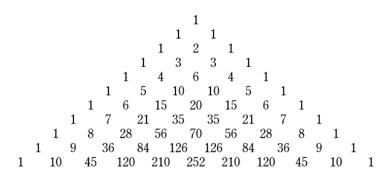
ı		_	
ŀ	ζ		
ľ	•		

$\binom{n}{k}$	0	1	2	3	4	5	6	
0	1	0	0	0	0	0	0	
1	1	1	0	0	0	0	0	
2	1	2	1	0	0	0	0	
3	1	3	3	1	0	0	0	
4	1	4	6	4	1	0	0	
5	1	5	10	10	5	1	0	
6	1	6	16	20	16	6	1	
:								٠

n



```
10
                             10
             6
                   15
                         20
                                15
                                       6
                21
                      35
                            35
                                   21
                   56
                         70
                                56
            28
                                      28
                                             8
                     126
                            126
                                         36
         36
                84
                                   84
                                                 9
      45
                         252
10
            120
                  210
                               210
                                      120
                                             45
                                                   10
```



Theorem. The nth row of Pascal's triangle is a symmetric, unimodal sequence that sums to 2^n .

Theorem. The nth row of Pascal's triangle is a symmetric, unimodal sequence that sums to 2^n .

Symmetric means
$$\binom{n}{k} = \binom{n}{n-k}$$
.

Theorem. The nth row of Pascal's triangle is a symmetric, unimodal sequence that sums to 2^n .

Symmetric means $\binom{n}{k} = \binom{n}{n-k}$. True, since ...

Theorem. The nth row of Pascal's triangle is a symmetric, unimodal sequence that sums to 2^n .

Symmetric means $\binom{n}{k} = \binom{n}{n-k}$. True, since ... Combinatorial proof?

Theorem. The nth row of Pascal's triangle is a symmetric, unimodal sequence that sums to 2^n .

Symmetric means $\binom{n}{k} = \binom{n}{n-k}$. True, since ... Combinatorial proof? Sums to 2^n , since ...

Theorem. The nth row of Pascal's triangle is a symmetric, unimodal sequence that sums to 2^n .

Symmetric means $\binom{n}{k} = \binom{n}{n-k}$. True, since ... Combinatorial proof? Sums to 2^n , since ... Combinatorial proof?

Theorem. The nth row of Pascal's triangle is a symmetric, unimodal sequence that sums to 2^n .

Symmetric means $\binom{n}{k} = \binom{n}{n-k}$. True, since ... Combinatorial proof? Sums to 2^n , since ... Combinatorial proof? Unimodal, since $1 \le \binom{n}{k+1}/\binom{n}{k} = \frac{k!(n-k)!}{(k+1)!(n-k-1)!} = \frac{n-k}{k+1} \Leftrightarrow k \le \frac{n-1}{2}$.

The Binomial Theorem

The Binomial Theorem

Theorem.

$$(x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n}x^0y^n \quad (*).$$

Theorem.

$$(x+y)^n = \binom{n}{0}x^n y^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n}x^0 y^n \quad (*).$$

Proof.

Theorem.

$$(x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n}x^0y^n \quad (*).$$

Proof. (Induction on n.)

Theorem.

(n = 0)

$$(x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n}x^0y^n$$
 (*).

Proof. (Induction on n .)

Theorem.

$$(x+y)^n = \binom{n}{0}x^n y^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n}x^0 y^n \quad (*).$$

Proof. (Induction on
$$n$$
.)

$$(n = 0)$$

$$(x+y)^0 = 1 = \binom{n}{0} x^0 y^0.$$

Theorem.

$$(x+y)^n = \binom{n}{0}x^n y^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n}x^0 y^n \quad (*).$$

Proof. (Induction on n.)

$$(n = 0)$$

$$(x+y)^0 = 1 = \binom{n}{0} x^0 y^0.$$

Assume true for n, prove it for n + 1.

Theorem.

$$(x+y)^n = \binom{n}{0}x^n y^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n}x^0 y^n \quad (*).$$

Proof. (Induction on n.)

$$(n = 0)$$

$$(x+y)^0 = 1 = \binom{n}{0} x^0 y^0.$$

Assume true for n, prove it for n + 1. Multiply (*) by x + y, use IH:

Theorem.

$$(x+y)^n = \binom{n}{0}x^n y^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n}x^0 y^n \quad (*).$$

Proof. (Induction on n.)

$$(n = 0)$$

$$(x+y)^0 = 1 = \binom{n}{0}x^0y^0.$$

Assume true for n, prove it for n + 1. Multiply (*) by x + y, use IH:

$$(x+y)^{n+1} = \binom{n}{0} x^{n+1} y^0 + \binom{n}{1} x^n y^1 + \cdots + \binom{n}{n} x^1 y^n + \binom{n}{0} x^n y^1 + \cdots + \binom{n}{n-1} x^1 y^n + \binom{n}{n} x^0 y^{n+1}$$

Theorem.

$$(x+y)^n = \binom{n}{0}x^n y^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n}x^0 y^n \quad (*).$$

Proof. (Induction on n.)

$$(n = 0)$$

$$(x+y)^0 = 1 = \binom{n}{0} x^0 y^0.$$

Assume true for n, prove it for n + 1. Multiply (*) by x + y, use IH:

$$(x+y)^{n+1} = \binom{n}{0} x^{n+1} y^0 + \binom{n}{1} x^n y^1 + \cdots + \binom{n}{n} x^1 y^n + \binom{n}{0} x^n y^1 + \cdots + \binom{n}{n-1} x^1 y^n + \binom{n}{n} x^0 y^{n+1}$$

$$\binom{n+1}{0} x^{n+1} y^0 \quad + \binom{n+1}{1} x^n y^1 \quad + \cdots \quad + \binom{n+1}{n} x^1 y^n \quad + \binom{n+1}{n+1} x^0 y^{n+1}$$

Problem.

Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell}$$

Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!}$$

Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!} = \frac{n!}{k!\ell!(n-k-\ell)!}$$

Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!} = \frac{n!}{k!\ell!(n-k-\ell)!} = \binom{n}{k,\ell,n-k-\ell}.$$

$$\textbf{Answer: } \binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!} = \frac{n!}{k!\ell!(n-k-\ell)!} = \binom{n}{k,\ell,n-k-\ell}.$$

Definition. If
$$n = k_1 + \cdots + k_r$$
, then $\binom{n}{k_1, \dots, k_r} = \frac{n!}{k_1! \cdots k_r!}$.

Problem. How many ways can we choose a k-element subset from n elements, and then an ℓ -element subset from the remaining elements?

Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!} = \frac{n!}{k!\ell!(n-k-\ell)!} = \binom{n}{k,\ell,n-k-\ell}.$$

Definition. If
$$n = k_1 + \cdots + k_r$$
, then $\binom{n}{k_1, \dots, k_r} = \frac{n!}{k_1! \cdots k_r!}$.

The combinatorial interpretation of $\binom{n}{k_1,\dots,k_r}$ is "the number of ways to choose k_1 elements from n, then k_2 elements from the remainder, then ... etc."

Problem. How many ways can we choose a k-element subset from n elements, and then an ℓ -element subset from the remaining elements?

Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!} = \frac{n!}{k!\ell!(n-k-\ell)!} = \binom{n}{k,\ell,n-k-\ell}.$$

Definition. If
$$n = k_1 + \cdots + k_r$$
, then $\binom{n}{k_1, \dots, k_r} = \frac{n!}{k_1! \cdots k_r!}$.

The combinatorial interpretation of $\binom{n}{k_1,\dots,k_r}$ is "the number of ways to choose k_1 elements from n, then k_2 elements from the remainder, then \dots etc."

Problem. How many ways can we choose a k-element subset from n elements, and then an ℓ -element subset from the remaining elements?

Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!} = \frac{n!}{k!\ell!(n-k-\ell)!} = \binom{n}{k,\ell,n-k-\ell}.$$

Definition. If
$$n = k_1 + \cdots + k_r$$
, then $\binom{n}{k_1, \dots, k_r} = \frac{n!}{k_1! \cdots k_r!}$.

The combinatorial interpretation of $\binom{n}{k_1,\dots,k_r}$ is "the number of ways to choose k_1 elements from n, then k_2 elements from the remainder, then \dots etc."

$$\bullet \ \binom{n}{0,\cdots,n,\cdots,0} = 1.$$

Problem. How many ways can we choose a k-element subset from n elements, and then an ℓ -element subset from the remaining elements?

Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!} = \frac{n!}{k!\ell!(n-k-\ell)!} = \binom{n}{k,\ell,n-k-\ell}.$$

Definition. If
$$n = k_1 + \cdots + k_r$$
, then $\binom{n}{k_1, \dots, k_r} = \frac{n!}{k_1! \cdots k_r!}$.

The combinatorial interpretation of $\binom{n}{k_1,\dots,k_r}$ is "the number of ways to choose k_1 elements from n, then k_2 elements from the remainder, then \dots etc."

$$\bullet \ \binom{n}{0,\cdots,n,\cdots,0} = 1.$$

Problem. How many ways can we choose a k-element subset from n elements, and then an ℓ -element subset from the remaining elements?

Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!} = \frac{n!}{k!\ell!(n-k-\ell)!} = \binom{n}{k,\ell,n-k-\ell}.$$

Definition. If
$$n = k_1 + \cdots + k_r$$
, then $\binom{n}{k_1, \dots, k_r} = \frac{n!}{k_1! \cdots k_r!}$.

The combinatorial interpretation of $\binom{n}{k_1,\dots,k_r}$ is "the number of ways to choose k_1 elements from n, then k_2 elements from the remainder, then \dots etc."

- $\bullet \ \binom{n}{0,\cdots,n,\cdots,0} = 1.$
- $\bullet \ \binom{n}{k_1, k_2, \dots, k_r} = \binom{n-1}{k_1 1, k_2, \dots, k_r} + \binom{n-1}{k_1, k_2 1, \dots, k_r} + \dots + \binom{n-1}{k_1, k_2, \dots, k_r 1}.$

Problem. How many ways can we choose a k-element subset from n elements, and then an ℓ -element subset from the remaining elements?

Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!} = \frac{n!}{k!\ell!(n-k-\ell)!} = \binom{n}{k,\ell,n-k-\ell}.$$

Definition. If
$$n = k_1 + \cdots + k_r$$
, then $\binom{n}{k_1, \dots, k_r} = \frac{n!}{k_1! \cdots k_r!}$.

The combinatorial interpretation of $\binom{n}{k_1,\dots,k_r}$ is "the number of ways to choose k_1 elements from n, then k_2 elements from the remainder, then \dots etc."

- $\bullet \ \binom{n}{0,\cdots,n,\cdots,0} = 1.$
- $\bullet \ \binom{n}{k_1, k_2, \dots, k_r} = \binom{n-1}{k_1 1, k_2, \dots, k_r} + \binom{n-1}{k_1, k_2 1, \dots, k_r} + \dots + \binom{n-1}{k_1, k_2, \dots, k_r 1}.$

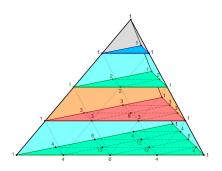
Problem. How many ways can we choose a k-element subset from n elements, and then an ℓ -element subset from the remaining elements?

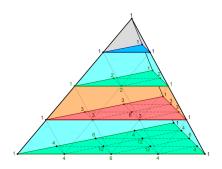
Answer:
$$\binom{n}{k} \cdot \binom{n-k}{\ell} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{\ell!(n-k-\ell)!} = \frac{n!}{k!\ell!(n-k-\ell)!} = \binom{n}{k,\ell,n-k-\ell}.$$

Definition. If
$$n = k_1 + \cdots + k_r$$
, then $\binom{n}{k_1, \dots, k_r} = \frac{n!}{k_1! \cdots k_r!}$.

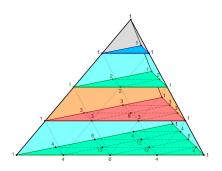
The combinatorial interpretation of $\binom{n}{k_1,\dots,k_r}$ is "the number of ways to choose k_1 elements from n, then k_2 elements from the remainder, then \dots etc."

- $\bullet \ \binom{n}{0,\cdots,n,\cdots,0} = 1.$
- $\bullet \ \binom{n}{k_1, k_2, \dots, k_r} = \binom{n-1}{k_1 1, k_2, \dots, k_r} + \binom{n-1}{k_1, k_2 1, \dots, k_r} + \dots + \binom{n-1}{k_1, k_2, \dots, k_r 1}.$





Multinomial Theorem.



Multinomial Theorem.

$$(x_1 + x_2 + \dots + x_r)^n = \sum_{k_1 + k_2 + \dots + x_r = n} \binom{n}{k_1, k_2, \dots, k_r} x_1^{k_1} x_2^{k_2} \cdots x_r^{k_r}.$$

First compute $(x + y + z)^4$.

First compute $(x + y + z)^4$.

$$\binom{4}{4,0,0} = 1,$$

First compute $(x+y+z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4,$$

First compute $(x + y + z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6,$$

First compute $(x + y + z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6, \binom{4}{2,1,1} = 12,$$

First compute $(x + y + z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6, \binom{4}{2,1,1} = 12,$$

so

$$\binom{n}{k}$$
, $\binom{n}{k_1,\ldots,k_r}$, $\binom{n}{k}$

First compute $(x + y + z)^4$.

$$\binom{4}{4,0,0}=1, \binom{4}{3,1,0}=4, \binom{4}{2,2,0}=6, \binom{4}{2,1,1}=12,$$

so

$$(x+y+z)^4 =$$

First compute $(x + y + z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6, \binom{4}{2,1,1} = 12,$$

$$(x+y+z)^4 = x^4 + y^4 + z^4$$

First compute $(x + y + z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6, \binom{4}{2,1,1} = 12,$$

$$\begin{array}{ll} (x+y+z)^4 & = x^4+y^4+z^4 \\ & +4(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y) \end{array}$$

First compute $(x + y + z)^4$.

$$\binom{4}{4,0,0}=1, \binom{4}{3,1,0}=4, \binom{4}{2,2,0}=6, \binom{4}{2,1,1}=12,$$

$$\begin{array}{ll} (x+y+z)^4 & = x^4+y^4+z^4 \\ & +4(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y) \\ & +6(x^2y^2+x^2z^2+y^2z^2) \end{array}$$

First compute $(x+y+z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6, \binom{4}{2,1,1} = 12,$$

$$\begin{array}{ll} (x+y+z)^4 &= x^4+y^4+z^4\\ &+4(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y)\\ &+6(x^2y^2+x^2z^2+y^2z^2)\\ &+12(x^2yz+xy^2z+xyz^2). \end{array}$$

First compute $(x+y+z)^4$.

$$\binom{4}{4,0,0}=1, \binom{4}{3,1,0}=4, \binom{4}{2,2,0}=6, \binom{4}{2,1,1}=12,$$

so

$$\begin{array}{ll} (x+y+z)^4 &= x^4+y^4+z^4\\ &+4(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y)\\ &+6(x^2y^2+x^2z^2+y^2z^2)\\ &+12(x^2yz+xy^2z+xyz^2). \end{array}$$

First compute $(x+y+z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6, \binom{4}{2,1,1} = 12,$$

so

$$\begin{array}{ll} (x+y+z)^4 & = x^4+y^4+z^4 \\ & +4(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y) \\ & +6(x^2y^2+x^2z^2+y^2z^2) \\ & +12(x^2yz+xy^2z+xyz^2). \end{array}$$

$$(1+t+t^2)^4 =$$

First compute $(x+y+z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6, \binom{4}{2,1,1} = 12,$$

so

$$\begin{array}{ll} (x+y+z)^4 &= x^4+y^4+z^4\\ &+4(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y)\\ &+6(x^2y^2+x^2z^2+y^2z^2)\\ &+12(x^2yz+xyz^2z+xyz^2). \end{array}$$

$$(1+t+t^2)^4 = 1+t^4+t^8$$

First compute $(x+y+z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6, \binom{4}{2,1,1} = 12,$$

so

$$\begin{array}{ll} (x+y+z)^4 & = x^4+y^4+z^4 \\ & +4(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y) \\ & +6(x^2y^2+x^2z^2+y^2z^2) \\ & +12(x^2yz+xy^2z+xyz^2). \end{array}$$

$$\begin{array}{ll} (1+t+t^2)^4 & = 1+t^4+t^8 \\ & + 4(t+t^2+t^3+t^5+t^6+t^7) \end{array}$$

First compute $(x+y+z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6, \binom{4}{2,1,1} = 12,$$

so

$$\begin{array}{ll} (x+y+z)^4 &= x^4+y^4+z^4 \\ &+4(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y) \\ &+6(x^2y^2+x^2z^2+y^2z^2) \\ &+12(x^2yz+xy^2z+xyz^2). \end{array}$$

$$\begin{array}{ll} (1+t+t^2)^4 &= 1+t^4+t^8 \\ &+ 4(t+t^2+t^3+t^5+t^6+t^7) \\ &+ 6(t^2+t^4+t^6) \end{array}$$

First compute $(x + y + z)^4$.

$$\binom{4}{4,0,0}=1, \binom{4}{3,1,0}=4, \binom{4}{2,2,0}=6, \binom{4}{2,1,1}=12,$$

so

$$\begin{array}{ll} (x+y+z)^4 & = x^4+y^4+z^4 \\ & +4(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y) \\ & +6(x^2y^2+x^2z^2+y^2z^2) \\ & +12(x^2yz+xy^2z+xyz^2). \end{array}$$

$$\begin{array}{ll} (1+t+t^2)^4 &= 1+t^4+t^8 \\ &+ 4(t+t^2+t^3+t^5+t^6+t^7) \\ &+ 6(t^2+t^4+t^6) \\ &+ 12(t^3+t^4+t^5) \end{array}$$

First compute $(x + y + z)^4$.

$$\binom{4}{4,0,0} = 1, \binom{4}{3,1,0} = 4, \binom{4}{2,2,0} = 6, \binom{4}{2,1,1} = 12,$$

so

$$\begin{array}{ll} (x+y+z)^4 & = x^4+y^4+z^4 \\ & +4(x^3y+x^3z+y^3x+y^3z+z^3x+z^3y) \\ & +6(x^2y^2+x^2z^2+y^2z^2) \\ & +12(x^2yz+xy^2z+xyz^2). \end{array}$$

$$\begin{array}{ll} (1+t+t^2)^4 &= 1+t^4+t^8 \\ &+ 4(t+t^2+t^3+t^5+t^6+t^7) \\ &+ 6(t^2+t^4+t^6) \\ &+ 12(t^3+t^4+t^5) \\ &= 1+4t+10t^2+16t^3+17t^4+16t^5+10t^6+4t^7+t^8. \end{array}$$

Definition. (informal) A **multiset** is a set with repetitions allowed, like $\{1,1,1,2,3,3\}$

Definition. (informal) A **multiset** is a set with repetitions allowed, like $\{1, 1, 1, 2, 3, 3\}$ (Order does not matter, only multiplicity.)

Definition. (informal) A **multiset** is a set with repetitions allowed, like $\{1,1,1,2,3,3\}$ (Order does not matter, only multiplicity.) [(more formally) A multiset is an ordered pair (S,f) where S is a set and $f:S\to\mathbb{N}$ is a multiplicity function.]

Definition. (informal) A **multiset** is a set with repetitions allowed, like $\{1,1,1,2,3,3\}$ (Order does not matter, only multiplicity.) [(more formally) A multiset is an ordered pair (S,f) where S is a set and $f:S\to\mathbb{N}$ is a multiplicity function.]

Theorem.

Definition. (informal) A **multiset** is a set with repetitions allowed, like $\{1,1,1,2,3,3\}$ (Order does not matter, only multiplicity.) [(more formally) A multiset is an ordered pair (S,f) where S is a set and $f\colon S\to \mathbb{N}$ is a multiplicity function.]

Theorem. The number of k-element multisubsets of an n-element set is $\binom{n+k-1}{k}$.

Definition. (informal) A **multiset** is a set with repetitions allowed, like $\{1,1,1,2,3,3\}$ (Order does not matter, only multiplicity.) [(more formally) A multiset is an ordered pair (S,f) where S is a set and $f\colon S\to \mathbb{N}$ is a multiplicity function.]

Theorem. The number of k-element multisubsets of an n-element set is $\binom{n+k-1}{k}$. (We write $\binom{n}{k}$ or MC(n,k) for this quantity)

Definition. (informal) A **multiset** is a set with repetitions allowed, like $\{1,1,1,2,3,3\}$ (Order does not matter, only multiplicity.) [(more formally) A multiset is an ordered pair (S,f) where S is a set and $f\colon S\to \mathbb{N}$ is a multiplicity function.]

Theorem. The number of k-element multisubsets of an n-element set is $\binom{n+k-1}{k}$. (We write $\binom{n}{k}$ or MC(n,k) for this quantity)

"Stars and Bars" Proof.

 \bullet How many k-element multisubsets of an n-element set are there?

 \bullet How many k-element multisubsets of an n-element set are there?

• How many k-element multisubsets of an n-element set are there? $\binom{n}{k}$.

- How many k-element multisubsets of an n-element set are there? $\binom{n}{k}$.
- How many ways are there to distribute k identical objects to n distinct recipients if each recipient may receive no objects, one object, or multiple objects?

- How many k-element multisubsets of an n-element set are there? $\binom{n}{k}$.
- ullet How many ways are there to distribute k identical objects to n distinct recipients if each recipient may receive no objects, one object, or multiple objects?

- How many k-element multisubsets of an n-element set are there? $\binom{n}{k}$.
- ② How many ways are there to distribute k identical objects to n distinct recipients if each recipient may receive no objects, one object, or multiple objects? $\binom{n}{k}$.

- How many k-element multisubsets of an n-element set are there? $\binom{n}{k}$.
- ② How many ways are there to distribute k identical objects to n distinct recipients if each recipient may receive no objects, one object, or multiple objects? $\binom{n}{k}$.
- 4 How many nonnegative integer solutions to

$$x_1 + \cdots + x_n = k$$

are there?

- How many k-element multisubsets of an n-element set are there? $\binom{n}{k}$.
- ② How many ways are there to distribute k identical objects to n distinct recipients if each recipient may receive no objects, one object, or multiple objects? $\binom{n}{k}$.
- 4 How many nonnegative integer solutions to

$$x_1 + \cdots + x_n = k$$

are there?

- How many k-element multisubsets of an n-element set are there? $\binom{n}{k}$.
- ② How many ways are there to distribute k identical objects to n distinct recipients if each recipient may receive no objects, one object, or multiple objects? $\binom{n}{k}$.
- Mow many nonnegative integer solutions to

$$x_1 + \cdots + x_n = k$$

are there? $\binom{n}{k}$.

- How many k-element multisubsets of an n-element set are there? $\binom{n}{k}$.
- ② How many ways are there to distribute k identical objects to n distinct recipients if each recipient may receive no objects, one object, or multiple objects? $\binom{n}{k}$.
- Mow many nonnegative integer solutions to

$$x_1 + \cdots + x_n = k$$

are there? $\binom{n}{k}$.