Meaning

Our goal is to understand the process of assigning meaning to a sentence.

Our goal is to understand the process of assigning meaning to a sentence. By "assigning meaning", we mean "determine truth or falsity" in a given context.

Our goal is to understand the process of assigning meaning to a sentence. By "assigning meaning", we mean "determine truth or falsity" in a given context.

For example, the sentence $(\exists x)(x^2 = 2)$ which expresses the existence of a square root of 2 is **false** in the structure $\mathbb{N} = \langle \{\text{natural nos.}\}; 0, 1, +, \cdot \rangle$

Our goal is to understand the process of assigning meaning to a sentence. By "assigning meaning", we mean "determine truth or falsity" in a given context.

For example, the sentence $(\exists x)(x^2 = 2)$ which expresses the existence of a square root of 2 is **false** in the structure $\mathbb{N} = \langle \{\text{natural nos.}\}; 0, 1, +, \cdot \rangle$ (= the context).

Our goal is to understand the process of assigning meaning to a sentence. By "assigning meaning", we mean "determine truth or falsity" in a given context.

For example, the sentence $(\exists x)(x^2 = 2)$ which expresses the existence of a square root of 2 is **false** in the structure $\mathbb{N} = \langle \{\text{natural nos.}\}; 0, 1, +, \cdot \rangle$ (= the context).

The same sentence $(\exists x)(x^2 = 2)$ is **true** in the structure $\mathbb{R} = \langle \{\text{real nos.}\}; 0, 1, +, \cdot \rangle$

Our goal is to understand the process of assigning meaning to a sentence. By "assigning meaning", we mean "determine truth or falsity" in a given context.

For example, the sentence $(\exists x)(x^2 = 2)$ which expresses the existence of a square root of 2 is **false** in the structure $\mathbb{N} = \langle \{\text{natural nos.}\}; 0, 1, +, \cdot \rangle$ (= the context).

The same sentence $(\exists x)(x^2 = 2)$ is **true** in the structure $\mathbb{R} = \langle \{\text{real nos.}\}; 0, 1, +, \cdot \rangle$ (= a different context).

Our goal is to determine the truth or falsity of a sentence σ in a structure A.

Our goal is to determine the truth or falsity of a sentence σ in a structure **A**. Stage 0.

Our goal is to determine the truth or falsity of a sentence σ in a structure **A**.

Stage 0. To get started, we need to know the meanings of the symbols used in the sentence.

Our goal is to determine the truth or falsity of a sentence σ in a structure **A**.

Stage 0. To get started, we need to know the meanings of the symbols used in the sentence. For this, we need tables for the structural elements of **A** that are used in σ .

Our goal is to determine the truth or falsity of a sentence σ in a structure **A**.

Stage 0. To get started, we need to know the meanings of the symbols used in the sentence. For this, we need tables for the structural elements of **A** that are used in σ .

Stage 1.

Our goal is to determine the truth or falsity of a sentence σ in a structure **A**.

Stage 0. To get started, we need to know the meanings of the symbols used in the sentence. For this, we need tables for the structural elements of **A** that are used in σ .

Stage 1. Propagate the information from Stage 0 to determine tables for the terms.

Our goal is to determine the truth or falsity of a sentence σ in a structure **A**.

Stage 0. To get started, we need to know the meanings of the symbols used in the sentence. For this, we need tables for the structural elements of **A** that are used in σ .

Stage 1. Propagate the information from Stage 0 to determine tables for the terms.

Stage 2.

Our goal is to determine the truth or falsity of a sentence σ in a structure **A**.

Stage 0. To get started, we need to know the meanings of the symbols used in the sentence. For this, we need tables for the structural elements of **A** that are used in σ .

Stage 1. Propagate the information from Stage 0 to determine tables for the terms.

Stage 2. Use the information from Stage 1 to determine tables for the atomic formulas.

Our goal is to determine the truth or falsity of a sentence σ in a structure **A**.

Stage 0. To get started, we need to know the meanings of the symbols used in the sentence. For this, we need tables for the structural elements of **A** that are used in σ .

Stage 1. Propagate the information from Stage 0 to determine tables for the terms.

Stage 2. Use the information from Stage 1 to determine tables for the atomic formulas.

Stage 3.

Our goal is to determine the truth or falsity of a sentence σ in a structure **A**.

Stage 0. To get started, we need to know the meanings of the symbols used in the sentence. For this, we need tables for the structural elements of **A** that are used in σ .

Stage 1. Propagate the information from Stage 0 to determine tables for the terms.

Stage 2. Use the information from Stage 1 to determine tables for the atomic formulas.

Stage 3. Propagate the information from Stage 1 to determine tables for the subformulas.

Our goal is to determine the truth or falsity of a sentence σ in a structure **A**.

Stage 0. To get started, we need to know the meanings of the symbols used in the sentence. For this, we need tables for the structural elements of **A** that are used in σ .

Stage 1. Propagate the information from Stage 0 to determine tables for the terms.

Stage 2. Use the information from Stage 1 to determine tables for the atomic formulas.

Stage 3. Propagate the information from Stage 1 to determine tables for the subformulas. When you have a table for σ , then you can announce the answer.

We will consider structures of the form $\langle A;+,\cdot,<\rangle$ and ask whether the following sentence is true:

We will consider structures of the form $\langle A;+,\cdot,<\rangle$ and ask whether the following sentence is true:

$$(\forall x)(\exists y)((x+y)^2 < x^2 + y^2)$$

We will consider structures of the form $\langle A;+,\cdot,<\rangle$ and ask whether the following sentence is true:

$$(\forall x)(\exists y)((x+y)^2 < x^2 + y^2)$$

in a particular structure.

We will consider structures of the form $\langle A; +, \cdot, < \rangle$ and ask whether the following sentence is true:

$$(\forall x)(\exists y)((x+y)^2 < x^2 + y^2)$$

in a particular structure. An appropriate language is any one that has nonlogical symbols $+, \cdot,$ and <.

We will consider structures of the form $\langle A; +, \cdot, < \rangle$ and ask whether the following sentence is true:

$$(\forall x)(\exists y)((x+y)^2 < x^2 + y^2)$$

in a particular structure. An appropriate language is any one that has nonlogical symbols $+, \cdot$, and <. Let $\mathbf{A} = \langle \{0, 1, 2\}; +, \cdot, < \rangle$ be the structure in such a language, where the interpretations of the basic symbols are give by the following tables:

We will consider structures of the form $\langle A; +, \cdot, < \rangle$ and ask whether the following sentence is true:

$$(\forall x)(\exists y)((x+y)^2 < x^2 + y^2)$$

in a particular structure. An appropriate language is any one that has nonlogical symbols $+, \cdot$, and <. Let $\mathbf{A} = \langle \{0, 1, 2\}; +, \cdot, < \rangle$ be the structure in such a language, where the interpretations of the basic symbols are give by the following tables:

Stage 0.

We will consider structures of the form $\langle A; +, \cdot, < \rangle$ and ask whether the following sentence is true:

$$(\forall x)(\exists y)((x+y)^2 < x^2 + y^2)$$

in a particular structure. An appropriate language is any one that has nonlogical symbols $+, \cdot$, and <. Let $\mathbf{A} = \langle \{0, 1, 2\}; +, \cdot, < \rangle$ be the structure in such a language, where the interpretations of the basic symbols are give by the following tables:

We will consider structures of the form $\langle A; +, \cdot, < \rangle$ and ask whether the following sentence is true:

$$(\forall x)(\exists y)((x+y)^2 < x^2 + y^2)$$

in a particular structure. An appropriate language is any one that has nonlogical symbols $+, \cdot$, and <. Let $\mathbf{A} = \langle \{0, 1, 2\}; +, \cdot, < \rangle$ be the structure in such a language, where the interpretations of the basic symbols are give by the following tables:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

We will consider structures of the form $\langle A; +, \cdot, < \rangle$ and ask whether the following sentence is true:

$$(\forall x)(\exists y)((x+y)^2 < x^2 + y^2)$$

in a particular structure. An appropriate language is any one that has nonlogical symbols $+, \cdot$, and <. Let $\mathbf{A} = \langle \{0, 1, 2\}; +, \cdot, < \rangle$ be the structure in such a language, where the interpretations of the basic symbols are give by the following tables:

+	0	1	2	•	0	1	2
0	0	1	2	0	0	0	0
1	1	2	0	1	0	1	2
2	2	0	1	2	0	2	1

We will consider structures of the form $\langle A; +, \cdot, < \rangle$ and ask whether the following sentence is true:

$$(\forall x)(\exists y)((x+y)^2 < x^2 + y^2)$$

in a particular structure. An appropriate language is any one that has nonlogical symbols $+, \cdot$, and <. Let $\mathbf{A} = \langle \{0, 1, 2\}; +, \cdot, < \rangle$ be the structure in such a language, where the interpretations of the basic symbols are give by the following tables:

+	0	1	2	
0	0	1	2	(
1	1	2	0	-
2	2	0	1	4

•	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

<	0	1	2	
0	F	T	Τ	
1	F	F	T	
2	F	F	F	

Compute the tables for the terms.

Stage 1

Compute the tables for the terms.

In this case, we only need to compute the tables for the terms $t_1 = (x + y)^2$ and $t_2 = x^2 + y^2$:

Stage 1

Compute the tables for the terms.

In this case, we only need to compute the tables for the terms $t_1 = (x + y)^2$ and $t_2 = x^2 + y^2$:

t_1	0	1	2	
0	0	1	1	
1	1	1	0	
2	1	0	1	

Stage 1

Compute the tables for the terms.

In this case, we only need to compute the tables for the terms $t_1 = (x + y)^2$ and $t_2 = x^2 + y^2$:

t_1	0	1	2	t_2	0
0	0	1	1	0	0
1	1	1	0	1	1
2	1	0	1	2	1

Compute the tables for the atomic formulas.

Compute the tables for the atomic formulas.

Compute the tables for the atomic formulas.

t_1	0	1	2
0	0	1	1
1	1	1	0
2	1	0	1

Compute the tables for the atomic formulas.

t_1	0	1	2	t_2	0	1	2
0	0	1	1	0	0	1	1
1	1	1	0	1	1	2	2
2	1	0	1	2	1	2	2

Compute the tables for the atomic formulas.

t_1	0	1	2]	t_2	0	1	2]	<	0	1	2
0	0	1	1		0	0	1	1		0	F	T	Τ
1	1	1	0		1	1	2	2		1	F	F	Т
2	1	0	1		2	1	2	2		2	F	F	F

Compute the tables for the atomic formulas.

t_1	0	1	2
0	0	1	1
1	1	1	0
2	1	0	1

t_2	0	1	2
0	0	1	1
1	1	2	2
2	1	2	2

<	0	1	2
0	F	Τ	T
1	F	F	Т
2	F	F	F

$t_1 < t_2$	0	1	2
0	F	F	F
1	F	T	T
2	F	T	T

Compute the tables for the subformulas.

Compute the tables for the subformulas.

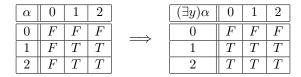
We already have the table for $\alpha = (t_1 < t_2)$ where $t_1 = (x + y)^2$ and $t_2 = x^2 + y^2$.

Compute the tables for the subformulas.

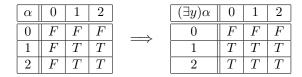
Compute the tables for the subformulas.

α	0	1	2
0	F	F	F
1	F	T	T
2	F	Т	T

Compute the tables for the subformulas.

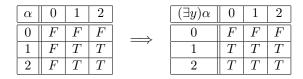


Compute the tables for the subformulas.



$(\exists y)\alpha$	0	1	2
0	F	F	F
1	T	T	T
2	T	T	T

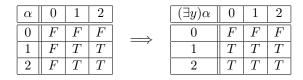
Compute the tables for the subformulas.

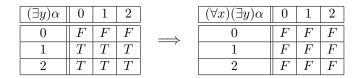


$(\exists y)\alpha$	0	1	2		$(\forall x)(\exists y)\alpha$	0	1	2
0	F	F	F	\rightarrow	0	F	F	F
1	T	T	T		1	F	F	F
2	T	T	T		2	F	F	F

Compute the tables for the subformulas.

We already have the table for $\alpha = (t_1 < t_2)$ where $t_1 = (x + y)^2$ and $t_2 = x^2 + y^2$. We only need to compute the table for the formula $(\exists y)\alpha$ and then $(\forall x)(\exists y)\alpha$.

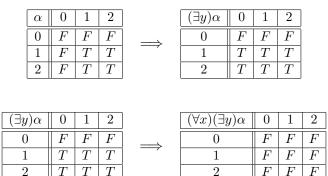




Conclusion:

Compute the tables for the subformulas.

We already have the table for $\alpha = (t_1 < t_2)$ where $t_1 = (x + y)^2$ and $t_2 = x^2 + y^2$. We only need to compute the table for the formula $(\exists y)\alpha$ and then $(\forall x)(\exists y)\alpha$.



Conclusion: The sentence is false in A.