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Theorem. 1 + 2 + · · · + n = n(n + 1)/2

Proof. Let Sn be the statement 1 + 2 + · · · + n = n(n + 1)/2.

Base Case(s). (n = 0)
S0: 0 = 0 ✓,
S1: 0 + 1 = 1 = 1(2)/2 ✓.

Inductive Step. Assume Sn is true: 1 + 2 + · · · + n = n(n + 1)/2. Add
(n + 1) to both sides:

1 + 2 + · · · + n + (n + 1) = n(n + 1)/2 + (n + 1)
= n(n + 1)/2 + 2(n + 1)/2
= (n + 1)[n/2 + 2/2]
= (n + 1)(n + 2)/2,

so Sn+1 is true. 2

Exercise. Prove 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)/6 in a similar way.
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Every positive n ∈ N is a product of primes

Let Sn be the statement that n is a product of prime numbers.
This can be proved by induction, but we must make two adjustments.

1 We want to prove that S1, S2, S3, . . . are all true. The Base Case is S1
rather than S0. This is not a problem. (Just re-index the statements to be
proved so that S′

k = Sk+1 and then prove S′
k by induction on k.)

2 The truth of Sn+1 does not depend directly on the truth of Sn, so we
should not expect to be able to prove that Sn → Sn+1 is true. For
example, when n = 100, we see that the fact that n + 1 = 101 is a
product of primes has nothing to do with the fact that n = 100 is a
product of primes – the prime factors of the two numbers are unrelated.
The truth of Sn will not help us to prove Sn+1.
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Strong Induction

A proof by Strong Induction has this structure:

1 Prove the Base Case, S0.
2 Prove the Inductive Step in the form

(S0 ∧ S1 ∧ · · · ∧ Sn) → Sn+1.

That is, prove Sn+1 is true assuming that ALL earlier statements have been
shown to be true. This is a valid proof method, since it is just ordinary
induction applied to the sequence of statements defined by

Tn = (S0 ∧ S1 ∧ · · · ∧ Sn)

instead of to the sequence Sn. (I.e., Prove T0, then prove Tn → Tn+1.)
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Every positive n ∈ N is a product of primes, revisited

Let Sn be the statement that “n is a product of prime numbers”. Let’s prove
Sn by Strong Induction for n = 1, 2, 3, . . ..

Base Case(s). (n = 1, 2, 3, 4)
S1: 1 is a product of zero primes. ✓
S2: 2 is a product of one prime. ✓
S3: 3 is a product of one prime. ✓
S4: 4 = 2 · 2 is a product of two primes. ✓

Inductive Step. Assume that n ≥ 4 and that 1, 2, . . . , n are all products of
primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)
In this case, n + 1 is a product of one prime. ✓

Case 1. (n + 1 is not prime)
In this case, n + 1 = a · b where 1 ≤ a, b < n + 1. Since Sa and Sb are
assumed to be true, a =

∏
pi and b =

∏
qj are each products of primes.

Hence n + 1 = a · b = (
∏

pi) · (
∏

qj) is a product of primes. ✓2
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Mistaken induction proofs, 1

Theorem. Place k + 1 distinct points p0, p1, . . . , pk on the boundary of a disk
and subdivide the disk with the segments pipj where no 3 segments pass
through a common point. If Nk is the number of regions obtained, then
Nk = 2k.

Proof. N0 = 1, N1 = 2, N2 = 4, N3 = 8, N4 = 16, so Nk = 2k for
k = 0, 1, 2, 3, 4. The pattern will continue, so the statement is true. 2

What is the mistake?

We checked the statement for small values of k, but we did not prove that the
pattern would continue. We did not prove the Inductive Step.

In fact, the statement is false: N5 = 31 ̸= 32 = 25. The correct formula is

Nk =
(

k

4

)
+
(

k − 1
2

)
+
(

k

1

)
= k4 − 6k3 + 23k2 − 18k + 24

24 .
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Mistaken induction proofs, 2

Theorem. For all n ∈ N, the number 2n + 1 is even.

Proof. Let Sn be the statement that 2n + 1 is even. We assume Sn and derive
Sn+1.

Inductive Step.
If 2n + 1 is even, then 2n + 1 = 2k for some k. Check Sn+1:
2(n + 1) + 1 = (2n + 2) + 1 = (2n + 1) + 2 = 2k + 2 = 2(k + 1) = even. 2

What is the mistake?

We did not prove the Base Case. (In fact, the statement is false.)
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Mistaken induction proofs, 3

Theorem. All horses have the same color.

Proof. List finitely many horses as (h0, h1, h2, . . . , hn). The claim is Sn : in any such
list involving n horses, all hi in the list have the same color.

Base Case. (n = 0) If the list is (h0), with one horse only, then all horses in the list
have the same color. ✓

Inductive Step. Assume Sn is true and prove Sn+1.

Let (h0, h1, h2, . . . , hn) be any list of n + 1 horses. By the Inductive Hypothesis, if
we delete the last horse, we find that all the horses in the list (h0, h1, h2, . . . , hn−1)
have the same color. Similarly, if we delete the first horse, we find that all the horses
in the list (h1, h2, . . . , hn) have the same color. It follows that all horses in the
original list (h0, h1, h2, . . . , hn) have the same color. (The first horse h0 has the same
color as the later horses, which have the same color as the last horse hn, so all have
the same color.) 2

Corollary. All horses are white.
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Mistaken induction proofs, 4

Theorem. π is rational.

Proof. Let Sn be the statement that decimal expansion of π truncated at the
nth digit past the decimal point is rational. (S0 says 3 is rational. S1 says 3.1
is rational. S2 says 3.14 is rational. S3 says 3.141 is rational. ETC.)
It is easy to see that S0 is true (3 is rational), and fairly easy to see that Sk

implies Sk+1. (That is, the (k + 1)-st decimal approximation is obtained from
the k-th decimal approximation by adding a rational number, so from the
Inductive Hypothesis we get that the (k + 1)-st decimal approximation is a
sum of two rational numbers.) This proves the theorem. 2

What is the mistake?

We only proved that all finite decimal approximations π are rational, but not
that the limit π is rational.
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Inductive Hypothesis we get that the (k + 1)-st decimal approximation is a
sum of two rational numbers.) This proves the theorem. 2

What is the mistake?

We only proved that all finite decimal approximations π are rational, but not
that the limit π is rational.
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