Induction proofs: examples and nonexamples

Proof.

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$. Base Case(s).

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$. Base Case(s). (n = 0)

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$. Base Case(s). (n = 0) S_0 :

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0$

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$,

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1:$

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2$

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2 \checkmark$.

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2 \checkmark$.

Inductive Step.

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2 \checkmark$.

Inductive Step. Assume S_n is true:

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2 \checkmark$.

Inductive Step. Assume S_n is true: $1 + 2 + \cdots + n = n(n+1)/2$.

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2 \checkmark$.

Inductive Step. Assume S_n is true: $1 + 2 + \cdots + n = n(n+1)/2$. Add (n+1) to both sides:

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2 \checkmark$.

Inductive Step. Assume S_n is true: $1 + 2 + \cdots + n = n(n+1)/2$. Add (n+1) to both sides:

$$1 + 2 + \dots + n + (n + 1) = n(n + 1)/2 + (n + 1)$$

= $n(n + 1)/2 + 2(n + 1)/2$
= $(n + 1)[n/2 + 2/2]$
= $(n + 1)(n + 2)/2$,

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2 \checkmark$.

Inductive Step. Assume S_n is true: $1 + 2 + \cdots + n = n(n+1)/2$. Add (n+1) to both sides:

$$1 + 2 + \dots + n + (n + 1) = n(n + 1)/2 + (n + 1)$$

= $n(n + 1)/2 + 2(n + 1)/2$
= $(n + 1)[n/2 + 2/2]$
= $(n + 1)(n + 2)/2$,

so S_{n+1} is true.

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2 \checkmark$.

Inductive Step. Assume S_n is true: $1 + 2 + \cdots + n = n(n+1)/2$. Add (n+1) to both sides:

$$1 + 2 + \dots + n + (n + 1) = n(n + 1)/2 + (n + 1)$$

= $n(n + 1)/2 + 2(n + 1)/2$
= $(n + 1)[n/2 + 2/2]$
= $(n + 1)(n + 2)/2$,

so S_{n+1} is true. \Box

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2 \checkmark$.

Inductive Step. Assume S_n is true: $1 + 2 + \cdots + n = n(n+1)/2$. Add (n+1) to both sides:

$$1 + 2 + \dots + n + (n + 1) = n(n + 1)/2 + (n + 1)$$

= $n(n + 1)/2 + 2(n + 1)/2$
= $(n + 1)[n/2 + 2/2]$
= $(n + 1)(n + 2)/2$,

so S_{n+1} is true. \Box

Exercise.

Proof. Let S_n be the statement $1 + 2 + \cdots + n = n(n+1)/2$.

Base Case(s). (n = 0) $S_0: 0 = 0 \checkmark$, $S_1: 0 + 1 = 1 = 1(2)/2 \checkmark$.

Inductive Step. Assume S_n is true: $1 + 2 + \cdots + n = n(n+1)/2$. Add (n+1) to both sides:

$$1 + 2 + \dots + n + (n + 1) = n(n + 1)/2 + (n + 1)$$

= $n(n + 1)/2 + 2(n + 1)/2$
= $(n + 1)[n/2 + 2/2]$
= $(n + 1)(n + 2)/2$,

so S_{n+1} is true. \Box

Exercise. Prove $1^2 + 2^2 + \dots + n^2 = n(n+1)(2n+1)/6$ in a similar way.

Let S_n be the statement that n is a product of prime numbers.

Let S_n be the statement that n is a product of prime numbers. This can be proved by induction, but we must make two adjustments.

• We want to prove that S_1, S_2, S_3, \ldots are all true.

Let S_n be the statement that n is a product of prime numbers. This can be proved by induction, but we must make two adjustments.

• We want to prove that S_1, S_2, S_3, \ldots are all true.

Let S_n be the statement that n is a product of prime numbers. This can be proved by induction, but we must make two adjustments.

• We want to prove that S_1, S_2, S_3, \ldots are all true. The Base Case is S_1 rather than S_0 .

Let S_n be the statement that n is a product of prime numbers. This can be proved by induction, but we must make two adjustments.

• We want to prove that S_1, S_2, S_3, \ldots are all true. The Base Case is S_1 rather than S_0 . This is not a problem.

Let S_n be the statement that n is a product of prime numbers. This can be proved by induction, but we must make two adjustments.

• We want to prove that S_1, S_2, S_3, \ldots are all true. The Base Case is S_1 rather than S_0 . This is not a problem. (Just re-index the statements to be proved so that $S'_k = S_{k+1}$ and then prove S'_k by induction on k.)

- We want to prove that S_1, S_2, S_3, \ldots are all true. The Base Case is S_1 rather than S_0 . This is not a problem. (Just re-index the statements to be proved so that $S'_k = S_{k+1}$ and then prove S'_k by induction on k.)
- The truth of S_{n+1} does not depend directly on the truth of S_n , so we should not expect to be able to prove that $S_n \to S_{n+1}$ is true.

- We want to prove that S_1, S_2, S_3, \ldots are all true. The Base Case is S_1 rather than S_0 . This is not a problem. (Just re-index the statements to be proved so that $S'_k = S_{k+1}$ and then prove S'_k by induction on k.)
- The truth of S_{n+1} does not depend directly on the truth of S_n , so we should not expect to be able to prove that $S_n \to S_{n+1}$ is true.

- We want to prove that S_1, S_2, S_3, \ldots are all true. The Base Case is S_1 rather than S_0 . This is not a problem. (Just re-index the statements to be proved so that $S'_k = S_{k+1}$ and then prove S'_k by induction on k.)
- The truth of S_{n+1} does not depend directly on the truth of S_n , so we should not expect to be able to prove that $S_n \to S_{n+1}$ is true. For example,

- We want to prove that S_1, S_2, S_3, \ldots are all true. The Base Case is S_1 rather than S_0 . This is not a problem. (Just re-index the statements to be proved so that $S'_k = S_{k+1}$ and then prove S'_k by induction on k.)
- The truth of S_{n+1} does not depend directly on the truth of S_n , so we should not expect to be able to prove that $S_n \to S_{n+1}$ is true. For example, when n = 100,

- We want to prove that S_1, S_2, S_3, \ldots are all true. The Base Case is S_1 rather than S_0 . This is not a problem. (Just re-index the statements to be proved so that $S'_k = S_{k+1}$ and then prove S'_k by induction on k.)
- The truth of S_{n+1} does not depend directly on the truth of S_n, so we should not expect to be able to prove that S_n → S_{n+1} is true. For example, when n = 100, we see that the fact that n + 1 = 101 is a product of primes has nothing to do with the fact that n = 100 is a product of primes

- We want to prove that S_1, S_2, S_3, \ldots are all true. The Base Case is S_1 rather than S_0 . This is not a problem. (Just re-index the statements to be proved so that $S'_k = S_{k+1}$ and then prove S'_k by induction on k.)
- The truth of S_{n+1} does not depend directly on the truth of S_n, so we should not expect to be able to prove that S_n → S_{n+1} is true. For example, when n = 100, we see that the fact that n + 1 = 101 is a product of primes has nothing to do with the fact that n = 100 is a product of primes the prime factors of the two numbers are unrelated.

- We want to prove that S_1, S_2, S_3, \ldots are all true. The Base Case is S_1 rather than S_0 . This is not a problem. (Just re-index the statements to be proved so that $S'_k = S_{k+1}$ and then prove S'_k by induction on k.)
- The truth of S_{n+1} does not depend directly on the truth of S_n, so we should not expect to be able to prove that S_n → S_{n+1} is true. For example, when n = 100, we see that the fact that n + 1 = 101 is a product of primes has nothing to do with the fact that n = 100 is a product of primes the prime factors of the two numbers are unrelated. The truth of S_n will not help us to prove S_{n+1}.
A proof by Strong Induction has this structure:

A proof by Strong Induction has this structure:

• Prove the Base Case, S_0 .

A proof by Strong Induction has this structure:

• Prove the Base Case, S_0 .

A proof by Strong Induction has this structure:

- Prove the Base Case, S_0 .
- **2** Prove the Inductive Step in the form

$$(S_0 \wedge S_1 \wedge \cdots \wedge S_n) \rightarrow S_{n+1}.$$

A proof by Strong Induction has this structure:

- Prove the Base Case, S_0 .
- **2** Prove the Inductive Step in the form

$$(S_0 \wedge S_1 \wedge \cdots \wedge S_n) \rightarrow S_{n+1}.$$

A proof by Strong Induction has this structure:

- Prove the Base Case, S_0 .
- **2** Prove the Inductive Step in the form

$$(S_0 \wedge S_1 \wedge \cdots \wedge S_n) \rightarrow S_{n+1}.$$

That is, prove S_{n+1} is true assuming that ALL earlier statements have been shown to be true.

A proof by Strong Induction has this structure:

- Prove the Base Case, S_0 .
- **2** Prove the Inductive Step in the form

$$(S_0 \wedge S_1 \wedge \cdots \wedge S_n) \rightarrow S_{n+1}.$$

That is, prove S_{n+1} is true assuming that ALL earlier statements have been shown to be true. This is a valid proof method, since it is just ordinary induction applied to the sequence of statements defined by

A proof by Strong Induction has this structure:

- Prove the Base Case, S_0 .
- **2** Prove the Inductive Step in the form

$$(S_0 \wedge S_1 \wedge \cdots \wedge S_n) \rightarrow S_{n+1}.$$

That is, prove S_{n+1} is true assuming that ALL earlier statements have been shown to be true. This is a valid proof method, since it is just ordinary induction applied to the sequence of statements defined by

$$T_n = (S_0 \land S_1 \land \dots \land S_n)$$

A proof by Strong Induction has this structure:

- Prove the Base Case, S_0 .
- **2** Prove the Inductive Step in the form

$$(S_0 \wedge S_1 \wedge \cdots \wedge S_n) \rightarrow S_{n+1}.$$

That is, prove S_{n+1} is true assuming that ALL earlier statements have been shown to be true. This is a valid proof method, since it is just ordinary induction applied to the sequence of statements defined by

$$T_n = (S_0 \wedge S_1 \wedge \dots \wedge S_n)$$

instead of to the sequence S_n .

A proof by Strong Induction has this structure:

- Prove the Base Case, S_0 .
- **2** Prove the Inductive Step in the form

$$(S_0 \wedge S_1 \wedge \cdots \wedge S_n) \rightarrow S_{n+1}.$$

That is, prove S_{n+1} is true assuming that ALL earlier statements have been shown to be true. This is a valid proof method, since it is just ordinary induction applied to the sequence of statements defined by

$$T_n = (S_0 \land S_1 \land \dots \land S_n)$$

instead of to the sequence S_n . (I.e., Prove T_0 , then prove $T_n \to T_{n+1}$.)

Let S_n be the statement that "*n* is a product of prime numbers".

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s).

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4)

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4)S₁: 1 is a product of zero primes.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4)S₁: 1 is a product of zero primes. \checkmark

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4)S₁: 1 is a product of zero primes. \checkmark S₂: 2 is a product of one prime. \checkmark

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4)S₁: 1 is a product of zero primes. \checkmark S₂: 2 is a product of one prime. \checkmark S₃: 3 is a product of one prime. \checkmark S₄: 4 = 2 · 2 is a product of two primes.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)

In this case, n + 1 is a product of one prime.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)In this case, n + 1 is a product of one prime. \checkmark

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)In this case, n + 1 is a product of one prime. \checkmark

Case 1.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)In this case, n + 1 is a product of one prime. \checkmark

Case 1. (n + 1 is not prime)

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)

In this case, n + 1 is a product of one prime. \checkmark

Case 1. (n + 1 is not prime)In this case, $n + 1 = a \cdot b$ where $1 \le a, b < n + 1$.

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)

In this case, n + 1 is a product of one prime. \checkmark

Case 1. (n + 1 is not prime)In this case, $n + 1 = a \cdot b$ where $1 \leq a, b < n + 1$. Since S_a and S_b are assumed to be true, $a = \prod p_i$ and $b = \prod q_j$ are each products of primes. Hence $n + 1 = a \cdot b = (\prod p_i) \cdot (\prod q_j)$ is a product of primes.
Every positive $n \in \mathbb{N}$ is a product of primes, revisited

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)

In this case, n + 1 is a product of one prime. \checkmark

Case 1. (n + 1 is not prime)In this case, $n + 1 = a \cdot b$ where $1 \leq a, b < n + 1$. Since S_a and S_b are assumed to be true, $a = \prod p_i$ and $b = \prod q_j$ are each products of primes. Hence $n + 1 = a \cdot b = (\prod p_i) \cdot (\prod q_j)$ is a product of primes. \checkmark

Every positive $n \in \mathbb{N}$ is a product of primes, revisited

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)

In this case, n + 1 is a product of one prime. \checkmark

Case 1. (n + 1 is not prime)In this case, $n + 1 = a \cdot b$ where $1 \leq a, b < n + 1$. Since S_a and S_b are assumed to be true, $a = \prod p_i$ and $b = \prod q_j$ are each products of primes. Hence $n + 1 = a \cdot b = (\prod p_i) \cdot (\prod q_j)$ is a product of primes. $\checkmark \Box$

Every positive $n \in \mathbb{N}$ is a product of primes, revisited

Let S_n be the statement that "*n* is a product of prime numbers". Let's prove S_n by Strong Induction for n = 1, 2, 3, ...

Base Case(s). (n = 1, 2, 3, 4) S_1 : 1 is a product of zero primes. \checkmark S_2 : 2 is a product of one prime. \checkmark S_3 : 3 is a product of one prime. \checkmark S_4 : $4 = 2 \cdot 2$ is a product of two primes. \checkmark

Inductive Step. Assume that $n \ge 4$ and that 1, 2, ..., n are all products of primes. We must argue that n + 1 is a product of primes.

Case 1. (n + 1 is prime)

In this case, n + 1 is a product of one prime. \checkmark

Case 1. (n + 1 is not prime)In this case, $n + 1 = a \cdot b$ where $1 \leq a, b < n + 1$. Since S_a and S_b are assumed to be true, $a = \prod p_i$ and $b = \prod q_j$ are each products of primes. Hence $n + 1 = a \cdot b = (\prod p_i) \cdot (\prod q_j)$ is a product of primes. $\checkmark \Box$

Theorem.

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point.

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof.

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof. $N_0 = 1, N_1 = 2, N_2 = 4, N_3 = 8, N_4 = 16,$

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof. $N_0 = 1, N_1 = 2, N_2 = 4, N_3 = 8, N_4 = 16$, so $N_k = 2^k$ for k = 0, 1, 2, 3, 4.

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof. $N_0 = 1, N_1 = 2, N_2 = 4, N_3 = 8, N_4 = 16$, so $N_k = 2^k$ for k = 0, 1, 2, 3, 4. The pattern will continue, so the statement is true.

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof. $N_0 = 1, N_1 = 2, N_2 = 4, N_3 = 8, N_4 = 16$, so $N_k = 2^k$ for k = 0, 1, 2, 3, 4. The pattern will continue, so the statement is true. \Box

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof. $N_0 = 1, N_1 = 2, N_2 = 4, N_3 = 8, N_4 = 16$, so $N_k = 2^k$ for k = 0, 1, 2, 3, 4. The pattern will continue, so the statement is true. \Box What is the mistake?

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof. $N_0 = 1, N_1 = 2, N_2 = 4, N_3 = 8, N_4 = 16$, so $N_k = 2^k$ for k = 0, 1, 2, 3, 4. The pattern will continue, so the statement is true. \Box

What is the mistake?

We checked the statement for small values of k, but we did not prove that the pattern would continue.

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof. $N_0 = 1, N_1 = 2, N_2 = 4, N_3 = 8, N_4 = 16$, so $N_k = 2^k$ for k = 0, 1, 2, 3, 4. The pattern will continue, so the statement is true. \Box

What is the mistake?

We checked the statement for small values of k, but we did not prove that the pattern would continue. We did not prove the Inductive Step.

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof. $N_0 = 1, N_1 = 2, N_2 = 4, N_3 = 8, N_4 = 16$, so $N_k = 2^k$ for k = 0, 1, 2, 3, 4. The pattern will continue, so the statement is true. \Box What is the mistake?

We checked the statement for small values of k, but we did not prove that the pattern would continue. We did not prove the Inductive Step.

In fact, the statement is false: $N_5 = 31 \neq 32 = 2^5$.

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof. $N_0 = 1, N_1 = 2, N_2 = 4, N_3 = 8, N_4 = 16$, so $N_k = 2^k$ for k = 0, 1, 2, 3, 4. The pattern will continue, so the statement is true. \Box What is the mistake?

We checked the statement for small values of k, but we did not prove that the pattern would continue. We did not prove the Inductive Step.

In fact, the statement is false: $N_5 = 31 \neq 32 = 2^5$. The correct formula is

Theorem. Place k + 1 distinct points p_0, p_1, \ldots, p_k on the boundary of a disk and subdivide the disk with the segments $\overline{p_i p_j}$ where no 3 segments pass through a common point. If N_k is the number of regions obtained, then $N_k = 2^k$.

Proof. $N_0 = 1, N_1 = 2, N_2 = 4, N_3 = 8, N_4 = 16$, so $N_k = 2^k$ for k = 0, 1, 2, 3, 4. The pattern will continue, so the statement is true. \Box What is the mistake?

We checked the statement for small values of k, but we did not prove that the pattern would continue. We did not prove the Inductive Step.

In fact, the statement is false: $N_5 = 31 \neq 32 = 2^5$. The correct formula is

$$N_k = \binom{k}{4} + \binom{k-1}{2} + \binom{k}{1} = \frac{k^4 - 6k^3 + 23k^2 - 18k + 24}{24}.$$

Theorem.

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof.

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even.

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k.

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k. Check S_{n+1} :

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k. Check S_{n+1} : 2(n+1) + 1 =

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k. Check S_{n+1} : 2(n+1) + 1 = (2n+2) + 1 =

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k. Check S_{n+1} : 2(n+1) + 1 = (2n+2) + 1 = (2n+1) + 2 =

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k. Check S_{n+1} : 2(n+1) + 1 = (2n+2) + 1 = (2n+1) + 2 = 2k + 2 =

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n+1 is even, then 2n+1=2k for some k. Check $S_{n+1}\colon 2(n+1)+1=(2n+2)+1=(2n+1)+2=2k+2=2(k+1)=$

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k. Check S_{n+1} : 2(n+1) + 1 = (2n+2) + 1 = (2n+1) + 2 = 2k + 2 = 2(k+1) = even.

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k. Check S_{n+1} : 2(n+1) + 1 = (2n+2) + 1 = (2n+1) + 2 = 2k + 2 = 2(k+1) =even. \Box

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k. Check S_{n+1} : 2(n+1) + 1 = (2n+2) + 1 = (2n+1) + 2 = 2k + 2 = 2(k+1) =even. \Box

What is the mistake?
Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k. Check S_{n+1} : 2(n+1) + 1 = (2n+2) + 1 = (2n+1) + 2 = 2k + 2 = 2(k+1) =even. \Box

What is the mistake?

We did not prove the Base Case.

Theorem. For all $n \in \mathbb{N}$, the number 2n + 1 is even.

Proof. Let S_n be the statement that 2n + 1 is even. We assume S_n and derive S_{n+1} .

Inductive Step.

If 2n + 1 is even, then 2n + 1 = 2k for some k. Check S_{n+1} : 2(n+1) + 1 = (2n+2) + 1 = (2n+1) + 2 = 2k + 2 = 2(k+1) =even. \Box

What is the mistake?

We did not prove the Base Case. (In fact, the statement is false.)

Theorem.

Theorem. All horses have the same color.

Theorem. All horses have the same color.

Proof.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, \ldots, h_n)$.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, \ldots, h_n)$. The claim is S_n :

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, \ldots, h_n)$. The claim is S_n : in any such list involving n horses,

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, \ldots, h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0)

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) ,

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only,

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, \ldots, h_n)$ be any list of n + 1 horses.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, \dots, h_n)$ be any list of n + 1 horses. By the Inductive Hypothesis,

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, ..., h_n)$ be any list of n + 1 horses. By the Inductive Hypothesis, if we delete the last horse,

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, ..., h_n)$ be any list of n + 1 horses. By the Inductive Hypothesis, if we delete the last horse, we find that all the horses in the list $(h_0, h_1, h_2, ..., h_{n-1})$ have the same color.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, ..., h_n)$ be any list of n + 1 horses. By the Inductive Hypothesis, if we delete the last horse, we find that all the horses in the list $(h_0, h_1, h_2, ..., h_{n-1})$ have the same color. Similarly,

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, \ldots, h_n)$ be any list of n + 1 horses. By the Inductive Hypothesis, if we delete the last horse, we find that all the horses in the list $(h_0, h_1, h_2, \ldots, h_{n-1})$ have the same color. Similarly, if we delete the first horse, we find that all the horses in the list (h_1, h_2, \ldots, h_n) have the same color.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, \ldots, h_n)$ be any list of n + 1 horses. By the Inductive Hypothesis, if we delete the last horse, we find that all the horses in the list $(h_0, h_1, h_2, \ldots, h_{n-1})$ have the same color. Similarly, if we delete the first horse, we find that all the horses in the list (h_1, h_2, \ldots, h_n) have the same color. It follows that all horses in the original list $(h_0, h_1, h_2, \ldots, h_n)$ have the same color.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, \ldots, h_n)$ be any list of n + 1 horses. By the Inductive Hypothesis, if we delete the last horse, we find that all the horses in the list $(h_0, h_1, h_2, \ldots, h_{n-1})$ have the same color. Similarly, if we delete the first horse, we find that all the horses in the list (h_1, h_2, \ldots, h_n) have the same color. It follows that all horses in the original list $(h_0, h_1, h_2, \ldots, h_n)$ have the same color. (The first horse h_0 has the same color as the later horses, which have the same color as the last horse h_n , so all have the same color.)

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, \ldots, h_n)$ be any list of n + 1 horses. By the Inductive Hypothesis, if we delete the last horse, we find that all the horses in the list $(h_0, h_1, h_2, \ldots, h_{n-1})$ have the same color. Similarly, if we delete the first horse, we find that all the horses in the list (h_1, h_2, \ldots, h_n) have the same color. It follows that all horses in the original list $(h_0, h_1, h_2, \ldots, h_n)$ have the same color. (The first horse h_0 has the same color as the later horses, which have the same color as the last horse h_n , so all have the same color.) \Box

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, \ldots, h_n)$ be any list of n + 1 horses. By the Inductive Hypothesis, if we delete the last horse, we find that all the horses in the list $(h_0, h_1, h_2, \ldots, h_{n-1})$ have the same color. Similarly, if we delete the first horse, we find that all the horses in the list (h_1, h_2, \ldots, h_n) have the same color. It follows that all horses in the original list $(h_0, h_1, h_2, \ldots, h_n)$ have the same color. (The first horse h_0 has the same color as the later horses, which have the same color as the last horse h_n , so all have the same color.) \Box

Corollary.

Theorem. All horses have the same color.

Proof. List finitely many horses as $(h_0, h_1, h_2, ..., h_n)$. The claim is S_n : in any such list involving n horses, all h_i in the list have the same color.

Base Case. (n = 0) If the list is (h_0) , with one horse only, then all horses in the list have the same color. \checkmark

Inductive Step. Assume S_n is true and prove S_{n+1} .

Let $(h_0, h_1, h_2, \ldots, h_n)$ be any list of n + 1 horses. By the Inductive Hypothesis, if we delete the last horse, we find that all the horses in the list $(h_0, h_1, h_2, \ldots, h_{n-1})$ have the same color. Similarly, if we delete the first horse, we find that all the horses in the list (h_1, h_2, \ldots, h_n) have the same color. It follows that all horses in the original list $(h_0, h_1, h_2, \ldots, h_n)$ have the same color. (The first horse h_0 has the same color as the later horses, which have the same color as the last horse h_n , so all have the same color.) \Box

Corollary. All horses are white.

Theorem.

Theorem. π is rational.

Theorem. π is rational.

Proof.

Theorem. π is rational.

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational.

Theorem. π is rational.

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational.
Theorem. π is rational.

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational.

Theorem. π is rational.

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational.

Theorem. π is rational.

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational.

Theorem. π is rational.

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.)

Theorem. π is rational.

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.) It is easy to see that S_0 is true

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.) It is easy to see that S_0 is true (3 is rational),

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.) It is easy to see that S_0 is true (3 is rational), and fairly easy to see that S_k implies S_{k+1} .

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.) It is easy to see that S_0 is true (3 is rational), and fairly easy to see that S_k implies S_{k+1} . (That is, the (k + 1)-st decimal approximation is obtained from the k-th decimal approximation by adding a rational number,

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.) It is easy to see that S_0 is true (3 is rational), and fairly easy to see that S_k implies S_{k+1} . (That is, the (k + 1)-st decimal approximation is obtained from the *k*-th decimal approximation by adding a rational number, so from the Inductive Hypothesis we get that the (k + 1)-st decimal approximation is a sum of two rational numbers.)

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.) It is easy to see that S_0 is true (3 is rational), and fairly easy to see that S_k implies S_{k+1} . (That is, the (k + 1)-st decimal approximation is obtained from the *k*-th decimal approximation by adding a rational number, so from the Inductive Hypothesis we get that the (k + 1)-st decimal approximation is a sum of two rational numbers.) This proves the theorem.

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.) It is easy to see that S_0 is true (3 is rational), and fairly easy to see that S_k implies S_{k+1} . (That is, the (k + 1)-st decimal approximation is obtained from the k-th decimal approximation by adding a rational number, so from the Inductive Hypothesis we get that the (k + 1)-st decimal approximation is a sum of two rational numbers.) This proves the theorem. \Box

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.) It is easy to see that S_0 is true (3 is rational), and fairly easy to see that S_k implies S_{k+1} . (That is, the (k + 1)-st decimal approximation is obtained from the k-th decimal approximation by adding a rational number, so from the Inductive Hypothesis we get that the (k + 1)-st decimal approximation is a sum of two rational numbers.) This proves the theorem. \Box

What is the mistake?

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.) It is easy to see that S_0 is true (3 is rational), and fairly easy to see that S_k implies S_{k+1} . (That is, the (k + 1)-st decimal approximation is obtained from the k-th decimal approximation by adding a rational number, so from the Inductive Hypothesis we get that the (k + 1)-st decimal approximation is a sum of two rational numbers.) This proves the theorem. \Box

What is the mistake?

We only proved that all finite decimal approximations π are rational,

Proof. Let S_n be the statement that decimal expansion of π truncated at the *n*th digit past the decimal point is rational. (S_0 says 3 is rational. S_1 says 3.1 is rational. S_2 says 3.14 is rational. S_3 says 3.141 is rational. ETC.) It is easy to see that S_0 is true (3 is rational), and fairly easy to see that S_k implies S_{k+1} . (That is, the (k + 1)-st decimal approximation is obtained from the k-th decimal approximation by adding a rational number, so from the Inductive Hypothesis we get that the (k + 1)-st decimal approximation is a sum of two rational numbers.) This proves the theorem. \Box

What is the mistake?

We only proved that all finite decimal approximations π are rational, but not that the limit π is rational.