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Comparisons

In mathematics, it is common to compare structures with functions.

1 Sets are compared with functions.
2 Ordered sets are compared with order-preserving functions.
3 Topological structures are compared with continuous functions.

Today, we will discuss how to compare algebraic structures with
operation-preserving functions. For simplicity, I will focus mostly on
magmas (algebraic structures ⟨A; ∗⟩ with one binary operation) or groups
(algebraic structures ⟨G; ·, −1, e⟩ with one binary operation, one unary
operation, and one constant, which satisfy the laws defining groups).
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The meaning of “h : ⟨A; ∗⟩ → ⟨B; ∗⟩ preserves ∗”

Let h : A → B be a function. Suppose there is a multiplication ∗ defined on
each of these sets. If h is to be ‘multiplication-preserving’, we would like the
following to be true:

1 Consider a1 ∈ A to correspond to h(a1) ∈ B.
2 Consider a2 ∈ A to correspond to h(a2) ∈ B.
3 We would like the product a1 ∗ a2 in A to correspond to the product

h(a1) ∗ h(a2) in B.
4 But the element a1 ∗ a2 ∈ A must correspond to h(a1 ∗ a2) ∈ B.

We conclude that
h(a1 ∗ a2) = h(a1) ∗ h(a2)

must hold for all a1, a2 ∈ A (if the multiplications correspond to each other).

(LHS: Operate, then apply h. RHS: Apply h, then operate.)
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Preserving operations of different arities

Assume that 2 is an n-ary operation symbol and that ⟨A;2A⟩ and ⟨B;2B⟩ are
structures equipped with a single n-ary operation denoted 2 or 2(x1, . . . , xn). (Here
2A is the 2 of A, while 2B is the 2 of B. Each has its own table.) A function
h : A → B preserves 2 if the following is true:

1 (2 is binary) h(2A(x, y)) = 2B(h(x), h(y)).

2 (2 is n-ary) h(2A(x1, x2, . . . , xn)) = 2B(h(x1), h(x2), . . . , h(xn)).

3 (2 is unary) h(2A(x)) = 2B(h(x)).

4 (2 is 0-ary, i.e., a constant) h(2A) = 2B.

(Omitting superscripts) If ⟨A; ·, −1, e⟩ and ⟨B; ·, −1, e⟩ are groups, then h : A → B
preserves the operations if

1 h(x · y) = h(x) · h(y).

2 h(x−1) = h(x)−1.

3 h(e) = e.
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Group homomorphisms

Definition. If A = ⟨A; ·, −1, e⟩ and B = ⟨B; ·, −1, e⟩ are groups, then a
homomorphism from A to B is a set-function h : A → B that preserves the
group operations.

Examples.

1 Multiplication by n:
h : Z → Z : x 7→ nx.

To check, you must show that n(x + y) = nx + ny, n(−x) = −nx and
n0 = 0 in Z.

2 Determinant: Let GLn(R) be the multiplicative group of invertible n × n
matrices. Let R× be the multiplicative group of invertible real numbers.
det : GLn(R) → R× is a group homomorphism.
To check, you must show that det(M · N) = det(M) · det(N),
det(M−1) = det(M)−1, and det(I) = 1.
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The canonical factorization of a function

F : A → B. F = ι ◦ F ◦ ν.
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6ν=natural ι=inclusion

A = dom(F ) B = cod(F )

coim(F )
im(F )

F (a) = F (h)

F (z)

F (q)

F

F̄ =induced

F̄ ([z]) = F (z)

F̄ ([q]) = F (q)
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Vocabulary and notation

1 F ⊆ A × B, F : A → B, A
F→ B.

2 F assigns y to x, y = F (x).
3 F : A → B : x 7→ (value assigned to x). (E.g., F : R → R : x 7→ x2)
4 F is injective: (Equivalently, F is 1-1.)
5 F is surjective: (Equivalently, F is onto.)
6 F is bijective: (Equivalently, F is 1-1 and onto.)
7 F is the identity function on A: (B = A & (∀x ∈ A)(F (x) = x))
8 F is invertible: (∃G : B → A)(G ◦ F = idA & F ◦ G = idB)
9 F is constant: (∀x, y ∈ A)(F (x) = F (y))

10 F is the inclusion map for a subset A ⊆ B: ((∀x ∈ A)(F (x) = x))
11 F is the natural map for a partition P on A: ((∀x ∈ A)(F (x) = [x]P ))
12 A

F→ B
G→ C, or G ◦ F : A → C. ((∀x ∈ A)(G ◦ F (x) = G(F (x))))
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What type of mathematical object?

Question. What kind of mathematical object is an image?

Answer. The image of F : A → B is a subset of B.

Question. What kind of mathematical object is a coimage?

Answer. The coimage of F : A → B is a partition of A.

Definition. A partition of A is a set P consisting of nonempty subsets of A
satisfying

1
⋃

P = A, and
2 if X, Y ∈ P , then X ∩ Y = ∅ or X = Y .

(The elements of P are called the cells or the parts of the partition. If a ∈ A,
then the cell containing a is often written [a] or [a]P .)

Example. P = {{0, 1, 2}, {3, 4}} is a partition of A = {0, 1, 2, 3, 4}. P has
two cells, A1 = {0, 1, 2} and A2 = {3, 4}.
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Subset and Partition capture Image and Coimage

Theorem.

1 A set is a subset of B if and only if it is the image of a function with
codomain B.

2 A set is a partition of A if and only if it is the coimage of a function with
domain A.

Idea of proof:

Stage 1. Show that an image is a subset and a coimage is a partition.

Stage 2. Suppose that S ⊆ B. Show that S is the image of the inclusion map

ιS : S → B : s 7→ s.

Next suppose that P is a partition of A. Show that P is the coimage of the

natural map
νP : A → P : a 7→ [a].

Homomorphisms 9 / 15
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Kernel versus Coimage

The coimage of a function is a partition of the domain. The same data is
encoded in the “kernel” of the function. Kernels are relations, while coimages
are not, so sometimes it is easier to use kernels.

Definition. The kernel of a function F : A → B is the relation

ker(F ) = {(a, a′) ∈ A2 | F (a) = F (a′)}.

This is the set of pairs that “F makes equal”.

Examples.

1 The kernel of idA is the equality relation on A.
2 The kernel of a constant function with domain A is A × A.
3 The kernel of F : R → R : x 7→ x2 is {(x, −x) | x ∈ R}.
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Interpreting these concepts for groups

If F : A → B is a group homomorphism, then there is a unique group
structure on the image and the coimage of F which makes ι, F , ν group
homomorphisms.
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6ν=natural ι=inclusion

A = dom(F ) B = cod(F )

coim(F )
im(F )

F (a) = F (h)

F (z)

F (q)

F

F̄ =induced

F̄ ([z]) = F (z)

F̄ ([q]) = F (q)
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Image and coimage are special for group homomorphisms

If F : A → B is a group homomorphism, then

1 the image of F must be a subgroup of B.
2 the fiber over the identity element, N = F −1(eB), must be a normal

subgroup of A.
3 the coimage of F must be the partition of A into the cosets of N .
4 the kernel of F is the equivalence relation associated to the coimage. It is

determined entirely by the equivalence class N of eA. For this reason, N
is also called the Kernel of F . (I am using lower-case ‘kernel’ to denote
the set-theoretical kernel, which is an equivalence relation. I am using
upper-case Kernel to denote the kernel-class of eA, which is
N = F −1(eB).)
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determined entirely by the equivalence class N of eA. For this reason, N
is also called the Kernel of F . (I am using lower-case ‘kernel’ to denote
the set-theoretical kernel, which is an equivalence relation. I am using
upper-case Kernel to denote the kernel-class of eA, which is
N = F −1(eB).)
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Exercise

Draw and describe all the parts of the parity homomorphism:

P : Z → Z2 : n 7→ n mod 2.

1 image?
2 coimage?
3 kernel? Kernel?
4 inclusion map?
5 natural map?
6 induced map?
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Isomorphisms and automorphisms

An invertible homomorphism is an isomorphism. That is, F : A → B is an
isomorphism if there exists a homomorphism G : B → A such that
G ◦ F = idA and F ◦ G = idB. An isomorphism is an automorphism if its
domain and codomain are equal.

Theorem. A homomorphism of algebraic structures is an isomorphism if and
only if it is a bijection.

(The analogous statement fails to be a theorem for relational or topological
structures.)

Examples.

1 Show that the group homomorphism φ : Z → Z : n 7→ −n is an
automorphism.

2 Let G be a group and let g be an element of G. Show that
γg : G → G : x 7→ gxg−1 is an automorphism. (This type of
automorphism, conjugation by some element g, is called an inner
automorphism.)
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Groups

The collection of automorphisms of a(n algebraic) structure is a group.
In fact,

The group concept is the ‘algebraic model for’ (or ‘abstraction of’) the
concrete concept of ‘automorphism structure’.

By this, I mean that if A is a structure of some sort and Aut(A) is the
collection of automorphisms of A, then Aut(A) usually has a group structure,
since

1 the composition of two automorphisms is usually an automorphism,
2 every automorphism has an inverse automorphism,
3 the identity function is usually an automorphism, and
4 the groups laws hold for automorphisms.

Examples. Groups arise as automorphism groups of algebras, relational
structures, geometries, topological spaces, ETC.
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