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We use functions to compare sizes of sets

1 |X| ≤ |Y | (or |Y | ≥ |X|) means there is an injection f : X → Y . We
read “|X| ≤ |Y |” as “the cardinality of X is less than or equal to the
cardinality of Y ”.
When either X or Y is a natural number, we might drop the vertical bars
and write k ≤ |Y | or |X| ≤ k, but these are just abbreviations for
|k| ≤ |Y | or |X| ≤ |k|.

2 |X| = |Y | means there is an bijection f : X → Y . We say “the
cardinality of X is equal to the cardinality of Y ” or “X is equipotent
with Y ”.

3 |X| < |Y | means |X| ≤ |Y | holds but |X| = |Y | fails. This can also be
written |Y | > |X|.

4 A set X is finite if there is a natural number k ∈ N such that |X| = |k|.
That is, X is finite if there exists a bijection f : k → X for some k ∈ N.

5 A set X is infinite if it is not finite.
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N is infinite

Lemma. (Baby “Pigeonhole Principle”.) If n ∈ N, then any injective function
f : n → n is surjective.
Proof. (Induction on n.)
Basis of Induction: The unique function f : 0 → 0 is the empty function,
which is the identity function on the set 0, which is both injective and
surjective.
Inductive step: Assume the theorem is true for n and let f : S(n) → S(n) be
an injective function. (S(n) = n ∪ {n}.)
Case 1. (f restricts to a function f |n : n → n.) In this case, f |n is surjective
and f = f |n ∪ {(n, n)}, so f is surjective.
Case 2. (f does not restrict to a function f |n : n → n, so f(m) = n for some
m < n.) Replace f with

f ′ = (f − {(m, n), (n, f(n))}) ∪ {(m, f(n)), (n, n)},

which is also injective and which satisfies im(f ′) = im(f). f ′ satisfies the
conditions of Case 1, so f ′ is surjective, so f is surjective. 2
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Consequences of the Baby Pigeonhole Principle

1 (Pigeonhole Principle) If n > m, then there is no injective function
f : n → m. (Otherwise, f : n → n is injective and not surjective.)

2 If m, n ∈ N, then |m| = |n| holds iff m = n holds.

3 N is infinite.

Assume otherwise that there is a bijection between N and some m ∈ N,
If f : N → m is a bijection, then for any n > m we have that
f |n : n → m is injective. This contradicts the Pigeonhole Principle.

4 If |N| ≤ |X|, then X is infinite.

Assume otherwise that there is an injection f : N → X and a bijection
g : X → m, m ∈ N. Then g ◦ f : N → m is an injection, and we get a
contradiction as above.
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Infinite sets

1 A set X is countably infinite if there is bijection f : N → X .
(|X| = |N|)

2 A set X is countable if it is finite or countably infinite.

3 A set X is uncountable if it is not countable.

Examples.

1 The following sets are countable:

N, Z, Q, and W

where W is the set of all finite-length strings of symbols from some
countable alphabet.

2 The following sets are uncountable:

R, Rn(n > 0), C, P(N), Eq(N).
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Cantor’s Theorem

Thm.

There is no surjective function f : A → P(A).

In fact, if f : A → P(A) is any function, then the Russell-type set

C = {x ∈ A | x /∈ f(x)}

is not in the image of f .

Proof. Assume that x ∈ A and f(x) = C. Then x ∈ f(x) iff x /∈ f(x), a
contradiction. 2

Cantor’s Theorem. For any set A, |A| < |P(A)|.

Proof. By HW3, Problem 1, F : A → P(A) : a 7→ {a} is injective, so
|A| ≤ |P(A)|. The theorem implies that |A| ≠ |P(A)|, so |A| < |P(A)|. 2

Exercise. Explain how Cantor’s Theorem implies that P(N) is uncountable.
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