Finite versus Infinite

$\textcircled{0} |X| \leq |Y|$

$\textcircled{0} |X| \leq |Y|$

• $|X| \le |Y| \text{ (or } |Y| \ge |X|)$

• $|X| \leq |Y|$ (or $|Y| \geq |X|$) means there is an injection $f: X \to Y$.

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

When either X or Y is a natural number, we might drop the vertical bars and write $k \leq |Y|$ or $|X| \leq k$, but these are just abbreviations for $|k| \leq |Y|$ or $|X| \leq |k|$.

|X| = |Y| means there is an bijection $f : X \to Y.$

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

When either X or Y is a natural number, we might drop the vertical bars and write $k \leq |Y|$ or $|X| \leq k$, but these are just abbreviations for $|k| \leq |Y|$ or $|X| \leq |k|$.

|X| = |Y| means there is an bijection $f : X \to Y.$

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

When either X or Y is a natural number, we might drop the vertical bars and write $k \leq |Y|$ or $|X| \leq k$, but these are just abbreviations for $|k| \leq |Y|$ or $|X| \leq |k|$.

② |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y"

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

When either X or Y is a natural number, we might drop the vertical bars and write $k \leq |Y|$ or $|X| \leq k$, but these are just abbreviations for $|k| \leq |Y|$ or $|X| \leq |k|$.

|X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

- |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".
- $|X| < |Y| \text{ means } |X| \le |Y| \text{ holds but } |X| = |Y| \text{ fails.}$

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

- |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".
- $|X| < |Y| \text{ means } |X| \le |Y| \text{ holds but } |X| = |Y| \text{ fails.}$

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

- |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".
- |X| < |Y| means $|X| \le |Y|$ holds but |X| = |Y| fails. This can also be written |Y| > |X|.

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

- |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".
- |X| < |Y| means $|X| \le |Y|$ holds but |X| = |Y| fails. This can also be written |Y| > |X|.
- **(**) A set X is **finite** if there is a natural number $k \in \mathbb{N}$ such that |X| = |k|.

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

- |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".
- |X| < |Y| means $|X| \le |Y|$ holds but |X| = |Y| fails. This can also be written |Y| > |X|.
- **(**) A set X is **finite** if there is a natural number $k \in \mathbb{N}$ such that |X| = |k|.

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

- |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".
- |X| < |Y| means $|X| \le |Y|$ holds but |X| = |Y| fails. This can also be written |Y| > |X|.
- A set X is **finite** if there is a natural number $k \in \mathbb{N}$ such that |X| = |k|. That is,

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

- |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".
- |X| < |Y| means $|X| \le |Y|$ holds but |X| = |Y| fails. This can also be written |Y| > |X|.
- A set X is finite if there is a natural number k ∈ N such that |X| = |k|. That is, X is finite if there exists a bijection f : k → X for some k ∈ N.

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

- |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".
- A set X is finite if there is a natural number k ∈ N such that |X| = |k|. That is, X is finite if there exists a bijection f : k → X for some k ∈ N.
- A set X is **infinite** if it is not finite.

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

- |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".
- A set X is finite if there is a natural number k ∈ N such that |X| = |k|. That is, X is finite if there exists a bijection f : k → X for some k ∈ N.
- A set X is **infinite** if it is not finite.

|X| ≤ |Y| (or |Y| ≥ |X|) means there is an injection f : X → Y. We read "|X| ≤ |Y|" as "the cardinality of X is less than or equal to the cardinality of Y".

- |X| = |Y| means there is an bijection f : X → Y. We say "the cardinality of X is equal to the cardinality of Y" or "X is equipotent with Y".
- A set X is finite if there is a natural number k ∈ N such that |X| = |k|. That is, X is finite if there exists a bijection f : k → X for some k ∈ N.
- A set X is **infinite** if it is not finite.

Lemma.

Lemma. (Baby "Pigeonhole Principle".)

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on *n*.) **Basis of Induction:**

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function,

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0,

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on *n*.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step:

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for *n* and let $f: S(n) \rightarrow S(n)$ be an injective function.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for *n* and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1.
Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$.

Case 1. (*f* restricts to a function $f|_n : n \to n$.)

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on *n*.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n, n)\}$, so f is surjective.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n,n)\}$, so f is surjective.

Case 2.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n, n)\}$, so f is surjective.

Case 2. (*f* does not restrict to a function $f|_n : n \to n$,

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on n.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n, n)\}$, so f is surjective.

Case 2. (*f* does not restrict to a function $f|_n : n \to n$, so f(m) = n for some m < n.)

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on *n*.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n, n)\}$, so f is surjective.

Case 2. (*f* does not restrict to a function $f|_n : n \to n$, so f(m) = n for some m < n.) Replace f with

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on *n*.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n, n)\}$, so f is surjective.

Case 2. (*f* does not restrict to a function $f|_n : n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on *n*.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n, n)\}$, so f is surjective.

Case 2. (*f* does not restrict to a function $f|_n : n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective and which satisfies im(f') = im(f).

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on *n*.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n, n)\}$, so f is surjective.

Case 2. (*f* does not restrict to a function $f|_n : n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective and which satisfies im(f') = im(f). f' satisfies the conditions of Case 1,

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on *n*.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n, n)\}$, so f is surjective.

Case 2. (*f* does not restrict to a function $f|_n : n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective and which satisfies im(f') = im(f). f' satisfies the conditions of Case 1, so f' is surjective,

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on *n*.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n, n)\}$, so f is surjective.

Case 2. (*f* does not restrict to a function $f|_n : n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective and which satisfies im(f') = im(f). f' satisfies the conditions of Case 1, so f' is surjective, so f is surjective.

Lemma. (Baby "Pigeonhole Principle".) If $n \in \mathbb{N}$, then any injective function $f: n \to n$ is surjective.

Proof. (Induction on *n*.)

Basis of Induction: The unique function $f: 0 \rightarrow 0$ is the empty function, which is the identity function on the set 0, which is both injective and surjective.

Inductive step: Assume the theorem is true for n and let $f: S(n) \to S(n)$ be an injective function. $(S(n) = n \cup \{n\})$

Case 1. (f restricts to a function $f|_n : n \to n$.) In this case, $f|_n$ is surjective and $f = f|_n \cup \{(n, n)\}$, so f is surjective.

Case 2. (*f* does not restrict to a function $f|_n : n \to n$, so f(m) = n for some m < n.) Replace f with

$$f' = (f - \{(m, n), (n, f(n))\}) \cup \{(m, f(n)), (n, n)\},\$$

which is also injective and which satisfies im(f') = im(f). f' satisfies the conditions of Case 1, so f' is surjective, so f is surjective. \Box

• (Pigeonhole Principle)

• (Pigeonhole Principle)

• (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$.

(Pigeonhole Principle) If n > m, then there is no injective function f: n → m. (Otherwise,

• (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- **3** \mathbb{N} is infinite.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- **3** \mathbb{N} is infinite.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- **3** \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$,

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- [●] \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection,

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- [●] \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f : \mathbb{N} \to m$ is a bijection, then for any n > m

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- [●] \mathbb{N} is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \to m$ is a bijection, then for any n > m we have that $f|_n: n \to m$ is injective.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- In N is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \to m$ is a bijection, then for any n > m we have that $f|_n: n \to m$ is injective. This contradicts the Pigeonhole Principle.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- In N is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \to m$ is a bijection, then for any n > m we have that $f|_n: n \to m$ is injective. This contradicts the Pigeonhole Principle.

• If $|\mathbb{N}| \leq |X|$, then X is infinite.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- In N is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \to m$ is a bijection, then for any n > m we have that $f|_n: n \to m$ is injective. This contradicts the Pigeonhole Principle.

• If $|\mathbb{N}| \leq |X|$, then X is infinite.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- In N is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \to m$ is a bijection, then for any n > m we have that $f|_n: n \to m$ is injective. This contradicts the Pigeonhole Principle.

• If $|\mathbb{N}| \leq |X|$, then X is infinite.

Assume otherwise that there is an injection $f \colon \mathbb{N} \to X$

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- In N is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \to m$ is a bijection, then for any n > m we have that $f|_n: n \to m$ is injective. This contradicts the Pigeonhole Principle.

• If $|\mathbb{N}| \leq |X|$, then X is infinite.

Assume otherwise that there is an injection $f \colon \mathbb{N} \to X$ and a bijection $g \colon X \to m, m \in \mathbb{N}$.

- (Pigeonhole Principle) If n > m, then there is no injective function $f: n \to m$. (Otherwise, $f: n \to n$ is injective and not surjective.)
- **2** If $m, n \in \mathbb{N}$, then |m| = |n| holds iff m = n holds.
- In N is infinite.

Assume otherwise that there is a bijection between \mathbb{N} and some $m \in \mathbb{N}$, If $f: \mathbb{N} \to m$ is a bijection, then for any n > m we have that $f|_n: n \to m$ is injective. This contradicts the Pigeonhole Principle.

• If $|\mathbb{N}| \leq |X|$, then X is infinite.

Assume otherwise that there is an injection $f : \mathbb{N} \to X$ and a bijection $g : X \to m, m \in \mathbb{N}$. Then $g \circ f : \mathbb{N} \to m$ is an injection, and we get a contradiction as above.

• A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.

• A set X is **countably infinite** if there is bijection $f : \mathbb{N} \to X$.

• A set X is countably infinite if there is bijection $f : \mathbb{N} \to X$. $(|X| = |\mathbb{N}|)$
- A set X is countably infinite if there is bijection $f : \mathbb{N} \to X$. $(|X| = |\mathbb{N}|)$
- **2** A set *X* is **countable** if it is finite or countably infinite.

- A set X is countably infinite if there is bijection $f : \mathbb{N} \to X$. $(|X| = |\mathbb{N}|)$
- **2** A set *X* is **countable** if it is finite or countably infinite.

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

- A set X is countably infinite if there is bijection $f : \mathbb{N} \to X$. $(|X| = |\mathbb{N}|)$
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

ℕ,

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$\mathbb{N}, \quad \mathbb{Z},$

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

- The following sets are countable:
 - $\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q},$

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

 $\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{Q}, \quad \text{and} \quad$

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

2 The following sets are uncountable:

 $\mathbb{R},$

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

$$\mathbb{R}, \mathbb{R}^n$$

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

$$\mathbb{R}, \quad \mathbb{R}^n (n > 0),$$

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

$$\mathbb{R}, \quad \mathbb{R}^n (n>0), \quad \mathbb{C},$$

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

$$\mathbb{R}, \quad \mathbb{R}^n (n>0), \quad \mathbb{C}, \quad \mathcal{P}(\mathbb{N}),$$

- A set X is countably infinite if there is bijection f : N → X.
 (|X| = |N|)
- **2** A set X is **countable** if it is finite or countably infinite.
- S A set X is **uncountable** if it is not countable.

Examples.

• The following sets are countable:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{W}$$

where \mathbb{W} is the set of all finite-length strings of symbols from some countable alphabet.

$$\mathbb{R}, \quad \mathbb{R}^n (n > 0), \quad \mathbb{C}, \quad \mathcal{P}(\mathbb{N}), \quad \mathrm{Eq}(\mathbb{N}).$$

Thm.

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

In fact, if $f: A \to \mathcal{P}(A)$ is any function, then the Russell-type set

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

In fact, if $f: A \to \mathcal{P}(A)$ is any function, then the Russell-type set

 $C = \{ x \in A \mid x \notin f(x) \}$

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

 $C = \{ x \in A \mid x \notin f(x) \}$

is not in the image of f.

Proof.

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C.

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{x \in A \mid x \notin f(x)\}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$,

Thm. There is no surjective function $f \colon A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction.

Thm. There is no surjective function $f \colon A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction. \Box

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction. \Box

Cantor's Theorem.

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction. \Box

Cantor's Theorem. For any set A, $|A| < |\mathcal{P}(A)|$.

Thm. There is no surjective function $f \colon A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction. \Box

Cantor's Theorem. For any set A, $|A| < |\mathcal{P}(A)|$.

Proof.

Thm. There is no surjective function $f \colon A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction. \Box

Cantor's Theorem. For any set A, $|A| < |\mathcal{P}(A)|$.

Proof. By HW3, Problem 1, $F: A \to \mathcal{P}(A): a \mapsto \{a\}$ is injective,
Thm. There is no surjective function $f \colon A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction. \Box

Cantor's Theorem. For any set A, $|A| < |\mathcal{P}(A)|$.

Proof. By HW3, Problem 1, $F \colon A \to \mathcal{P}(A) \colon a \mapsto \{a\}$ is injective, so $|A| \leq |\mathcal{P}(A)|$.

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction. \Box

Cantor's Theorem. For any set A, $|A| < |\mathcal{P}(A)|$.

Proof. By HW3, Problem 1, $F \colon A \to \mathcal{P}(A) \colon a \mapsto \{a\}$ is injective, so $|A| \leq |\mathcal{P}(A)|$. The theorem implies that $|A| \neq |\mathcal{P}(A)|$, so $|A| < |\mathcal{P}(A)|$.

Thm. There is no surjective function $f: A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction. \Box

Cantor's Theorem. For any set A, $|A| < |\mathcal{P}(A)|$.

Proof. By HW3, Problem 1, $F \colon A \to \mathcal{P}(A) \colon a \mapsto \{a\}$ is injective, so $|A| \leq |\mathcal{P}(A)|$. The theorem implies that $|A| \neq |\mathcal{P}(A)|$, so $|A| < |\mathcal{P}(A)|$. \Box

Thm. There is no surjective function $f \colon A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{ x \in A \mid x \notin f(x) \}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction. \Box

Cantor's Theorem. For any set A, $|A| < |\mathcal{P}(A)|$.

Proof. By HW3, Problem 1, $F : A \to \mathcal{P}(A) : a \mapsto \{a\}$ is injective, so $|A| \leq |\mathcal{P}(A)|$. The theorem implies that $|A| \neq |\mathcal{P}(A)|$, so $|A| < |\mathcal{P}(A)|$. \Box Exercise.

Thm. There is no surjective function $f \colon A \to \mathcal{P}(A)$.

In fact, if $f \colon A \to \mathcal{P}(A)$ is any function, then the Russell-type set

$$C = \{x \in A \mid x \notin f(x)\}$$

is not in the image of f.

Proof. Assume that $x \in A$ and f(x) = C. Then $x \in f(x)$ iff $x \notin f(x)$, a contradiction. \Box

Cantor's Theorem. For any set A, $|A| < |\mathcal{P}(A)|$.

Proof. By HW3, Problem 1, $F \colon A \to \mathcal{P}(A) \colon a \mapsto \{a\}$ is injective, so $|A| \leq |\mathcal{P}(A)|$. The theorem implies that $|A| \neq |\mathcal{P}(A)|$, so $|A| < |\mathcal{P}(A)|$. \Box

Exercise. Explain how Cantor's Theorem implies that $\mathcal{P}(\mathbb{N})$ is uncountable.