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Consequences of the Baby Pigeonhole Principle

@ (Pigeonhole Principle) If n > m, then there is no injective function
f: n — m. (Otherwise, f: n — n is injective and not surjective.)

@ If m,n € N, then |m| = |n| holds iff m = n holds.

@ N is infinite.

Assume otherwise that there is a bijection between N and some m € N,
If f: N — m is a bijection, then for any n > m
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Consequences of the Baby Pigeonhole Principle

@ (Pigeonhole Principle) If n > m, then there is no injective function
f: n — m. (Otherwise, f: n — n is injective and not surjective.)

@ If m,n € N, then |m| = |n| holds iff m = n holds.

@ N is infinite.
Assume otherwise that there is a bijection between N and some m € N,

If f/: N — m is a bijection, then for any n > m we have that
fln: m — m is injective.
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@ (Pigeonhole Principle) If n > m, then there is no injective function
f: n — m. (Otherwise, f: n — n is injective and not surjective.)

@ If m,n € N, then |m| = |n| holds iff m = n holds.

@ N is infinite.

Assume otherwise that there is a bijection between N and some m € N,
If f: N — m is abijection, then for any n > m we have that
f|n: n — mis injective. This contradicts the Pigeonhole Principle.

Q@ If |N| < |X]|, then X is infinite.

Assume otherwise that there is an injection f: N — X and a bijection
g: X - m,meN.
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Consequences of the Baby Pigeonhole Principle

@ (Pigeonhole Principle) If n > m, then there is no injective function
f: n — m. (Otherwise, f: n — n is injective and not surjective.)

@ If m,n € N, then |m| = |n| holds iff m = n holds.

@ N is infinite.

Assume otherwise that there is a bijection between N and some m € N,
If f: N — m is abijection, then for any n > m we have that
f|n: n — mis injective. This contradicts the Pigeonhole Principle.

Q@ If |N| < |X]|, then X is infinite.

Assume otherwise that there is an injection f: N — X and a bijection
g: X = m,m € N. Then g o f: N — m is an injection, and we get a
contradiction as above.
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© A set X is countable if it is finite or countably infinite.
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Examples.
@ The following sets are countable:
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@ A set X is countably infinite if there is bijection f : N — X.
(1X] = [N])

© A set X is countable if it is finite or countably infinite.
@ A set X is uncountable if it is not countable.

Examples.
@ The following sets are countable:

N, Z,
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Infinite sets

@ A set X is countably infinite if there is bijection f : N — X.
(1X] = [N])

© A set X is countable if it is finite or countably infinite.
@ A set X is uncountable if it is not countable.

Examples.
@ The following sets are countable:

N7 Z? Q?
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Infinite sets

@ A set X is countably infinite if there is bijection f : N — X.
(1X] = [N])

© A set X is countable if it is finite or countably infinite.
@ A set X is uncountable if it is not countable.

Examples.
@ The following sets are countable:

N, Z, Q, and W

where W is the set of all finite-length strings of symbols from some
countable alphabet.
© The following sets are uncountable:

R

)
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Infinite sets

@ A set X is countably infinite if there is bijection f : N — X.
(1X] = [N])

© A set X is countable if it is finite or countably infinite.
@ A set X is uncountable if it is not countable.

Examples.
@ The following sets are countable:

N, Z, Q, and W

where W is the set of all finite-length strings of symbols from some
countable alphabet.

© The following sets are uncountable:

R, R"
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Infinite sets

@ A set X is countably infinite if there is bijection f : N — X.
(1X] = [N])

© A set X is countable if it is finite or countably infinite.
@ A set X is uncountable if it is not countable.

Examples.
@ The following sets are countable:

N, Z, Q, and W

where W is the set of all finite-length strings of symbols from some
countable alphabet.

© The following sets are uncountable:

R, R"(n>0),
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@ A set X is countably infinite if there is bijection f : N — X.
(1X] = [N])

© A set X is countable if it is finite or countably infinite.
@ A set X is uncountable if it is not countable.

Examples.
@ The following sets are countable:

N, Z, Q, and W

where W is the set of all finite-length strings of symbols from some
countable alphabet.

© The following sets are uncountable:

R, R*(n>0), C,
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@ A set X is countably infinite if there is bijection f : N — X.
(1X] = [N])

© A set X is countable if it is finite or countably infinite.
@ A set X is uncountable if it is not countable.

Examples.
@ The following sets are countable:

N, Z, Q, and W

where W is the set of all finite-length strings of symbols from some
countable alphabet.

© The following sets are uncountable:

R, R"(n>0), C, P(N),
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Infinite sets

@ A set X is countably infinite if there is bijection f : N — X.
(1X] = [N])

© A set X is countable if it is finite or countably infinite.
@ A set X is uncountable if it is not countable.

Examples.
@ The following sets are countable:

N, Z, Q, and W

where W is the set of all finite-length strings of symbols from some
countable alphabet.

© The following sets are uncountable:

R, R"(n>0), C, P(N), Eq(N).
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In fact, if f: A — P(A) is any function, then the Russell-type set
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is not in the image of f.

Proof. Assume that x € A and f(z) = C. Thenz € f(x)iffz ¢ f(x),a
contradiction. O

Al < [P(A)].

Proof. By HW3, Problem 1, F': A — P(A): a — {a} is injective, so
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Exercise. Explain how Cantor’s Theorem implies that P(N) is uncountable.
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