
DISCRETE MATH (MATH 2001)

REVIEW SHEET II

Sections 2.7, 3.1, 3.2, 3.5, 3.6.1, 4.1–4.4, 4.6.1, 4.8, 6.1–6.3, 6.5, 6.6, 6.10

IV. Cardinality.
(a) Meaning of |A| ≤ |B|, |A| = |B|, and |A| < |B|.
(b) Finite and infinite. Countable and uncountable.
(c) Pigeonhole Principle. N is infinite.
(d) Cantor-Bernstein-Schroeder Theorem.
(e) Cantor’s Theorem.
(f) |N| < |P(N)| = |R| = |Rn|.

V. Logic.
(a) Structures.
(b) Alphabet of symbols. Ingredients in a compound predicate.
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(c) Deciding the truth of a statement in a structure.
(i) Assigning tables to terms.
(ii) Assigning tables to atomic formulas.
(iii) Logical connectives. Truth tables. Propositional tautology. Propositional

contradiction. Logical equivalence of propositions. Logical implication of
propositions. Logical independence of propositions.

(iv) Effect of logical connectives and quantifiers on the tables for predicates.
(vi) Disjunctive normal form.
(vii) Prenex form.
(viii) Quantifier games. Winning strategies.
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(d) Proof.
(i) Definition of “proof”.
(ii) Axioms. Logically valid sentence.
(iii) Laws of deduction. Modus ponens, modus tollens.
(iv) Direct proof, proof of the contrapositive, and proof by contradiction. Proof

by cases.
(v) The use of truth tables for designing proof strategies.
(vi) The relationship between truth and provability: semantic consequence

(Σ |= S) versus syntactic consequence (Σ ⊢ S).
(vii) Significance of Soundness and Completeness with regard to proof systems.
(vii) Relevance of Gödel’s Completeness Theorem.

VI. Counting.
(a) Additive counting principle and multiplicative counting principle.
(b) Number of functions f : k → n. Characteristic functions. |P(n)|.
(c) Number of injective functions f : k → n.
(d) Number of bijective functions f : k → n. Number of permutations of a finite

set.
(e) If E is a uniform equivalence relation on X, then

|X/E| = |X|/(common size of E-classes).

(f) Binomial coefficients: definition, formula, recursion, Binomial Theorem, Pascal’s
Triangle, combinatorial proof.

(g) Multinomial coefficients: definition, formula, recursion, Multinomial Theorem,
Pascal’s Pyramid.

(h) Multichoose numbers: definition, formula.
(i) Inclusion-exclusion.
(j) Number of surjective functions f : k → n.
(k) Stirling numbers of the second kind: definition, formula, recursion.
(ℓ) Discrete probability: sample space, outcome, event, mututally exclusive events,

complementary events, simple events, classical probability, finite probability
space, independent events.

General advice on preparing for a math test.
Be prepared to demonstrate understanding in the following ways.

(i) Know the definitions of new concepts, and the meanings of the definitions.
(ii) Know the statements and meanings of the major theorems.
(iii) Know examples/counterexamples. (The purpose of an example is to illustrate the

extent of a definition or theorem. The purpose of a counterexample is to indicate
the limits of a definition or theorem.)
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(iv) Know how to perform the different kinds of calculations discussed in class. (Here
calculation refers to any routine or mechanical procedure, such as creating a truth
table or putting a sentence in prenex form.)

(v) Be prepared to prove elementary statements. (Understanding the proofs done in
class is the best preparation for this.)

(vi) Know how to correct mistakes made on old HW.

Is the final exam cumulative?
No. The final exam will cover only material discussed after the October 6 midterm.
Specifically, you will be examined only on Section 2.7 (Cardinality) and parts of Chapters

3, 4 (logic) and 6 (counting). But some of this later material relies on earlier material. For
example, in some problems you might need to know what a subset is, even though that is not
the focus of the problem. For another example, a question on logic might ask you to write
a sentence formally. The sentence might be about sets or functions or natural numbers,
and you might need to know about sets or functions or the natural numbers to write the
sentence correctly.

Some definitions to know.

(1) Predicate. Operation. Structure.
(2) Logical connective. Truth table. Tautology. Contradiction.
(3) Contrapositive. Converse. Inverse.
(4) Disjunction. Conjunction. Disjunctive normal form.
(5) Proof. Axioms. Rules of deduction.
(6) Valid sentence.
(7) Semantic consequence. Syntactic consequence.
(8) Soundness. Completeness.
(9) Additive counting principal. Multiplicative counting principal.
(10) Binomial coefficient. Multinomial coefficient. Multichoose number. Stirling number.

Some theorems to know.

(1) Pigeonhole Principle.
(2) Cantor-Bernstein-Schroeder Theorem.
(3) Cantor’s Theorem.
(4) Gödel’s Completeness Theorem.
(5) Binomial Theorem. Multinomial Theorem.
(6) Inclusion-Exclusion Theorem.

Practice Problems.

(1) How do you answer a question where you are asked to “Give an example”?

Give an example of such a question.
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(2) How do you answer a question where you are asked to “Give a definition”?

Define “definition”.

(3) If you are asked to “Give a proof or counterexample”, how do you decide which thing
to do?

Give a proof or counterexample to the claim “Every prime is odd.”

(4) Suppose the task is to define the word “function”, and the answer given is “A function
is something with an input and an output, like f(x) = x+1.” Explain what is wrong
with this answer.

This expresses an intuition, but it is not a definition. A definition should (i)
indicate the word introduced to refer to the defined object, should (ii) indicate what
class of objects the defined object belongs to, and it should (iii) identify the properties
that distinguish the defined object from other objects in its class.

To satisfy Item (i), the word is “function”. For Item (ii), the class of objects it
belongs to is the class of “binary relations”. For Item (iii), the property that singles
out functions from arbitrary binary relations is “the function rule”. Altogether, one
should write: A function from A to B is a relation from A to B that satisfies the
Function Rule.

(5) State the theorem.
(a) Binomial Theorem.

See page 5 of the April 11 slides.

(b) Principle of Inclusion and Exclusion.

This statement is the first displayed line of the April 16 handout.

(6) True or False? Explain.
(a) If A ⊆ B ⊆ C and |A| = |C|, then |A| = |B|.

True.

Analysis: We have two hypotheses, H1 = A ⊆ B ⊆ C and H2 = |A| = |C|, and
one conclusion, |A| = |B|. We must show that (H1 ∧ H2) → C holds. I will
present a direct proof, which means I will aim to argue that |A| = |B| holds
given the hypotheses. I recognize that to do this I must establish the existence
of a bijection from A to B.
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Proof: The hypothesis that |A| = |C| guarantees the existence of a bijection
f : C → A. Also, the hypothesis that A ⊆ B ⊆ C guarantees the existence
of (injective) inclusion functions ιAB : A → B and ιBC : B → C. The function
f ◦ ιBC : B → A is the composition of injective functions, so it is injective. Since
ιAB : A → B and f ◦ ιBC : B → A are injective functions in opposite directions
between A and B, it follows from the Cantor-Bernstein-Schröder Theorem that
there is a bijection between A and B, so |A| = |B|.

(b) If A has an uncountable subset, then A is uncountable.

It is probably easier to prove the contrapositive statement, which is:

If A is countable, then every subset of A is countable.

Sketch:
Recall that A is countable if either (i) A is finite or (ii) |A| = |N|. Therefore,

there are two cases to consider. In Case (i), it suffices to assume that A = n =
{0, 1, . . . , n− 1} for some n ∈ N. For Case (ii), it suffices to assume that A = N.

To fully prove the statement, one might prove:
(i) A subset of a natural number n is finite.

This can be proved by induction. The proof is similar to the proof of the Baby
Pigeonhole Principle, which can be found on page 3 of the slides from February
21.

(ii) An infinite subset S of N satisfies |S| = |N|.
Prove this with the Recursion Theorem. That is, assuming that S is an infinite
subset of N, define f : N → S by

f(0) = the least element of S
f(S(n)) = the least element of S greater than f(n)

The Recursion Theorem guarantees the existence of such a function, and when
S is infinite it can be shown that f : N → S is a bijection. This shows |N| = |S|.

(7) Write a formal sentence expressing the Axiom of Union. Then draw a formula tree
for your sentence.

Informally, we want to say that given any A = {B0, B1, . . .}, the union U =
⋃

A =
B0 ∪ B1 ∪ B2 ∪ · · · exists. We can express this as:

(∀A)(∃U)(∀x)((x ∈ U) ↔ (∃B)((x ∈ B) ∧ (B ∈ A)))
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∀A

∃U

∀x

↔

x ∈ U ∃B

∧

x ∈ B B ∈ A

(8) Suppose that P and Q are compound propositions.
(a) Must the implication P → Q be logically equivalent to its converse?
(b) Must the implication P → Q be logically inequivalent to its converse?
(c) Must the implication P → Q be logically independent of its converse?

(a) No. (Counterexample: let P and Q be propositional variables. If these do not
look like ‘compound’ propositions, you could let P = p∧ p and Q = q ∧ q where
p and q are propositional variables.)

(b) No. (Counterexample: consider the case P = Q.)
(c) No. (Counterexample: consider the case P = Q.)

(9) A theorem with two hypotheses and one conclusion has the form ((H1 ∧H2) → C).
Which of the following implications defines a valid proof strategy?
(a) (H1∧(¬C)) → (¬H2) (the proof would look like H1, (¬C), · · · , (¬H2).)
(b) ((¬C) → ((¬H1) ∧ (¬H2)))
(c) (H1 → (H2 → C))

Strategies (a) and (c) are valid, but (b) is not. (If you change one character of
Strategy (b), then it becomes a valid strategy. Which character and how should you
change it?)

(10) A politician claims that if we adopt their plan, then everyone will benefit. Let A =
“we adopt their plan” and let B(x) = “x benefits”. This claim may be formalized
as “A → (∀x)B(x)”. When asked to justify their claim, the politician explains”
“Imagine if we did not adopt the plan. Then X, Y , and Z are likely to happen,
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and some people will not benefit”. This explanation may be formalized as “(¬A) →
(∃x)(¬B(x))”. Does this explanation justify the claim? Explain why or why not.

No, the explanation does not justify the claim. Rather, the explanation given
justifies the INVERSE of the claim, and in general the inverse of an implication is
logically independent of the implication.

(11) Write the following sentence in prenex form.

(∀x)(∀y)((x < y) → ((∃z)(z < x)) ∧ ((∃z)((x < z) ∧ (z < y))) ∧ ((∃z)(y < z)))

(∀x)(∀y)(∃u)(∃v)(∃z)((x < y) → ((u < x)) ∧ (((x < v) ∧ (v < y))) ∧ ((y < z)))

Decide the truth of this sentence in (a) ⟨R;<⟩, (b) ⟨Z;<⟩ by describing a winning
strategy for the relevant quantifier.

(a) The statement is true in R. To establish this, we will exhibit a winning strategy
for ∃:

• ∀ chooses some x and y. If x ̸< y, then ∃ has already won, so there is
nothing more to do. If x < y, then there is more for ∃ to do.

• ∃ chooses u = x−1, v = x+y
2
, z = y+1. With these choices we have u < x,

x < v < y, and y < z, so ∃ wins.
(b) The statement is false in Z. To establish this, we will exhibit a winning strategy

for ∀:
• ∀ chooses some x = 0 and y = 1. With these choices, x < y.
• ∃ must now lose, because she will not be able to find a v in Z satisfying
0 < v < 1.

(12) The following sentence expresses that the function f(x) = 2x + 1 is continuous at
x = 1.

(∀ε > 0)(∃δ > 0)(∀x)((0 < |x− 1| < δ) → (|f(x)− f(1)| < ε)).

Explain why the following is a winning strategy for ∃ for this sentence in the structure
⟨R; +,−, 0, ·, 1, |x|, <, f(x)⟩.

• ∀ chooses some ε.
• ∃ chooses δ = ε/2.
• ∀ chooses some x.

Is f(x) = 2x+ 1 continuous at x = 1?

The answer to the last question is ‘Yes’, since the strategy is a winning strategy
for ∃.
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Let’s explain why the strategy is winning for ∃. If the chosen value for ε is ≤ 0,
then ∃ has already won so any choice for δ is OK. In the case where ε > 0, the
strategy tells ∃ to choose δ = ε/2, and this will force δ > 0, which we need. Next,
∀ chooses some x. If we do not have (0 < |x − 1| < δ), then ∃ has already won, so
assume that (0 < |x−1| < δ) holds. Focusing on the part of this that says |x−1| < δ
yields the following conclusions successively:

• |x− 1| < δ, or
• −δ < x− 1 < δ, or
• −ε/2 < x− 1 < ε/2, or
• −ε < 2x− 2 < ε, or
• −ε < (2x+ 1)− 3 < ε, or
• −ε < f(x)− f(1) < ε, or
• |f(x)− f(1)| < ε.

This shows that ∃ strategy is a winning one, i.e., following the strategy produces a
choice for δ that satisfies the sentence.

(13) Prove that the empty set is finite.

We must show that there is a bijection between ∅ and some natural number. But
∅ = 0 ∈ N, so the identity function id∅ : ∅ → 0 is such a bijection.

(14) How many license plates have exactly 7 characters consisting of decimal digits (0, 1, . . . , 9)
and letters of the alphabet (a, b, . . . , z)? What if there are exactly 3 decimal digits,
4 letters of the alphabet, and the digits must come before the letters?

For the first part of the question, a license plate has 7 characters which can appear
in any order and with any multiplicity, which are chosen from an alphabet of 10+26 =
36 characters. The total will be 36 · 36 · · · · 36 = 367.
If we choose the first three characters from the decimal digits and the last four from

the letters of the alphabet, a similar argument shows that the number of possible
license plates is 10 · 10 · 10 · 26 · 26 · 26 · 26 = 103 · 264.

(15) How many license plates have 3 decimal digits and 4 letters of the alphabet if the
plate must start and end with a digit, and either start with 9 or end with 9?

Let A be the set of plates that have 3 decimal digits and 4 letters and which start
with 9 and end with a digit. Let B be the set of plates that have 3 decimal digits and
4 letters and which end with 9 and start with a digit. We need to compute |A ∪B|
(= |A|+ |B| − |A ∩B|).

First compute |A|. Each plate in A starts with 9, ends in a digit, and has one
other digit in some position from 2-6. The number of these is

|A| = 1 ·
(
10

1

)
·
(
7− 2

1

)
·
(
10

1

)
· 264 = 500 · 264.
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(We choose the first character in 1 way, then we chose the last character in 10 ways,
then we choose the location of the remaining digit in

(
7−2
1

)
ways, then we choose

which digit is the remaining one in
(
10
1

)
ways. Finally we fill in the remaining 4

characters in 264 ways.)
One can see that |B| = |A| = 500 · 264. We compute |A ∩ B| in exactly the same

way. The only difference from what is above is that the first and last characters are
BOTH 9, so one of the factors

(
10
1

)
= 10 should be

(
1
1

)
= 1. Thus |A∩B| = 50 · 264.

The final answer is |A∪B| = 500 ·264+500 ·264−50 ·264 = 950 ·264 = 434127200.

(16) How many ways are there to distribute 12 different books to 3 people? What if each
person must get at least one book?

The first part of the problem is the problem of counting the number of functions
from a 12-element set to a 3-element set. This is 312. The second part of the problem
counts the number of surjective functions from a 12-element set to a 3-element set.
This is 3! · S(12, 3).

(17) How many ways are there to distribute 12 identical textbooks to three shelves? How
many ways to distribute 12 different books to three shelves? (In the second question,
assume that the order of the books on each shelf matters.)

The first part of the problem is the problem of counting the number of ways
to distribute 12 identical objects to three distinct recipients. This is the same as
counting the number of 12-element multisets of a 3 element set, and the formula
for that is

(
12+3−1

12

)
= 91 In the second part of the problem, we can select home

many books go on each shelf first using the argument from the previous paragraph
( =

(
12+3−1

12

)
), then we can arrange the books in a sequence in 12!-many ways, then

we can take the books from the sequence and place them in the shelves in order.
Altogether there will be

(
12+3−1

12

)
· 12! = 14!/2! many distributions.

(18) How many positive integral solutions are there to the equation

x1 + x2 + x3 + x4 + x5 + x6 = 100?

How many nonnegative integral solutions are there?

This may be viewed as the problem counting the number of distributions of 100
identical balls to 6 boxes labeled x1, . . . , x6. The answer to the first part is

((
6
94

))
=

(
99
94

)
(each box gets a ball). The answer to the second part is

((
6

100

))
=

(
105
100

)
(some boxes

may be empty).
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(19) How many ways are there to make 3 fruit baskets from 8 pineapples, 10 pomegranates,
6 coconuts and 20 figs if each basket must contain each kind of fruit?

Let the 3 baskets be boxes, and distribute the identical fruit one type at a time.
There are

((
3
5

))
ways to distribute the pineapples so that each basket gets one,

((
3
7

))
ways

to distribute the pomegranates,
((
3
3

))
ways to distribute the coconuts, and

((
3
17

))
ways to

distribute the figs. Thus, the number of ways to make 3 baskets is
((
3
5

))
·
((
3
7

))
·
((
3
3

))
·
((

3
17

))
.

(20) In your department, everyone works in one of three workgroups. Workgroups A and
B each have a total of 23 workers; Workgroup C has a total of 32 workers; there are
5 workers who belong in both groups A and B; 10 workers who belong in both B and
C; 8 workers who belong in both A and C; and three workers who belong in all three
groups. How many workers are in your department?

We must calculate |A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C|.
We are given that |A| = |B| = 23, |C| = 32, |A ∩ B| = 5, |B ∩ C| = 10, |A ∩ C| =
8, and |A ∩ B ∩ C| = 3. Adding these number with the appropriate sign yields
|A ∪B ∪ C| = 58.

(21) How many positive integers less than 1000 are not divisible by 2, 3, 5 or 7?

1000− 500− 333− 200− 142 + 166 + 100 + 71+ 66+ 47+ 28− 33− 23− 14− 9 + 4 = 228.

(22) How many 5 digit numbers fail to contain the sequence 01? How about 00?

First part:
105 − 4 · 103 + 3 · 10 = 96030.

Second part:

105 − 4 · 103 + 3 · 102 + 3 · 10− 22 + 1 = 96309.

(23) How many 6 digit numbers have the property that, for every k, the kth digit is
different than the (7− k)th digit?

(
3

0

)
106 −

(
3

1

)
105 +

(
3

2

)
104 −

(
3

3

)
103 = 10393 = 729000.
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(24) Give a combinatorial proof that S(n, n− 1) = C(n, 2).

Let A be the set of partitions of X = {x1, . . . , xn} into n−1 cells and let B be the
set of 2-element subsets of X. A typical member of A will be a partition in which all
but one of the cells are singletons, and the final cell is a doubleton. Such a partition
might be written {{x1, x2}, {x3}, . . . {xn}} or more informally as x1x2/x3/ · · · /xn. A
typical member of B might be written as {xi, xj} where 1 ≤ i < j ≤ n.
According to the definitions of the functions S(n, k) and C(n, k), |A| = S(n, n−1)

and |B| = C(n, 2). To answer the question, it will suffice to exhibit a bijection
f : B → A. Informally, we might describe f as

{xi, xj} 7→ xixj/x1/ · · · /xn.

More formally, define f so that, for {xi, xj} ∈ B, f({xi, xj}) is the partition of X
which has a single cell {xi, xj} that is a doubleton and all other cells are singletons.
This is a partition of X into n− 1 cells, so f({xi, xj}) ∈ A. It is easy to see how to
invert f : f−1 : A → B is defined so that if Π ∈ A, then f(Π) = the 2-element cell of
Π.

The fact that f is a bijection from B to A establishes that S(n, n − 1) = |A| =
|B| = C(n, 2).

(25) Suppose that |A| = n and |B| = m. How many pairs (X, Y ) are there where
X = coim(f) and Y = im(f) for some function f : A → B?

Recall that if f : A → B, then the induced function f : coim(f) → im(f) is a bijec-
tion. This implies that |coim(f)| = |im(f)|; let k denote the common size of coim(f)
and im(f). Since ν : A → coim(f) is a surjection we have n = |A| ≥ |coim(f)| = k,
and similarly since ι : im(f) → B is an injection we have k = |coim(f)| ≤ |B| = m.
Thus, 0 ≤ k ≤ min(n,m). There is no other restriction on k.
The number of choices for X = coim(f), for a given choice of k, is S(n, k) (= the

number of partitions of A into k cells). The number of choices for Y = im(f), for the
same choice of k, is C(m, k) (= the number of subsets of B of size k). The number
of pairs (X, Y ), for this fixed k, is S(n, k) · C(m, k). Since k may vary from 0 to

min(n,m), the Additive Sum Principle yields the final answer:
∑min(n,m)

k=0 S(n, k) ·
C(m, k).

(26) Is there a natural number n such that p = 1/12 is the probability that a randomly
chosen positive natural number k, 1 ≤ k ≤ n is relatively prime to n?

The answer is No.
Choose the set Ω = {1, 2, . . . , n} for a sample space, F = P(Ω) for the event space,

and, for E ∈ F , set P (E) = |E|/|Ω|.
The question asks whether P (E) = 1

12
for the event E defined to be the set of

k ∈ [1, n] that are relatively prime to n. Let’s evaluate |E| using inclusion/exclusion.
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Suppose that the prime factorization of n is n = pe11 · · · perr where p1 < p2 < · · · < pr
are prime. For each prime divisor pi let Ai be the set of numbers in Ω that are divisible
by pi. Since E equals the set of numbers in Ω that have no prime divisor among
{p1, p2, . . . , pr}, we have E = Ω−

⋃r
i=1Ai, so

|E| = |Ω−
⋃r

i=1Ai|
= |Ω| − |

⋃r
i=1 Ai|

= n− (
∑

|Ai| −
∑

|Ai ∩ Aj|+ · · · )
= n−

(∑
n
pi
−
∑

n
pipj

+ · · ·
)

= n
(
1−

∑
1
pi
+
∑

1
pipj

− · · ·
)

= n
(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
= n

(
p1−1
p1

· p2−1
p2

· · · pr−1
pr

)

Hence P (E) = |E|/|Ω| = (p1−1)(p2−1)(pr−1)
p1·p2···pr . Notice that the denominator of this

fraction is not divisible by the square of any prime number. This fraction might
not be in reduced form, but even if we reduce it we will still maintain the property
the denominator of this fraction is not divisible by the square of any prime number.
Hence, when P (E) is written as a reduced fraction, then its denominator will not be
divisible by the square of any prime number. This shows that P (E) = 1

12
= 1

22·3 is
impossible.

(27) What is the probability that a 3-element multiset of elements from {1, 2, 3, 4, 5} has
no repeated elements? (Express your answer as a reduced fraction.)

A 3-element multiset from {1, 2, 3, 4, 5} will have no repeated elements if and only
if it is a 3-element subset. Thus, the probability is(

5
3

)((
5
3

)) =

(
5
3

)(
7
3

) =
5!4!

7!2!
=

2

7
.

(28) Rank the following poker hands in terms of their likelihood. (Rank the most likely
hand first, followed by the next most likely, etc.)
(a) One pair.
(b) Two pair.
(c) Three pair.
(d) Three of a kind.
(e) Four of a kind.
(f) Full house. (This means: three of one kind and two of a different kind.)
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Note that three pair is impossible in a 5-card hand, so Item (c) is the least likely.
If we write A > B to mean that A is more likely than B, then the order is

One pair > Two pair > Three of a kind > Full house > Four of a kind > Three pair

The number of hands of each type, when drawn from a 52-card deck, are:(
13
1

)(
4
2

)(
12
3

)(
4
1

)3
>

(
13
2

)(
4
2

)2(11
1

)(
4
1

)
>

(
13
1

)(
4
3

)(
12
2

)(
4
1

)2
>

(
13
1

)(
4
3

)(
12
1

)(
4
2

)
>

(
13
1

)(
4
4

)(
12
1

)(
4
1

)
> 0

The probabilities are computed from the above numbers by dividing each by
(
52
5

)
:

0.4226 > 0.04754 > 0.02113 > 0.001441 > 0.0002401 > 0


