Counting

Sum Rule.

Sum Rule. (Or "Additive counting principle")

Sum Rule. (Or "Additive counting principle") If A and B are disjoint finite sets, then $|A \cup B| = |A| + |B|$.

Sum Rule. (Or "Additive counting principle") If A and B are disjoint finite sets, then $|A \cup B| = |A| + |B|$.

Product Rule.

Sum Rule. (Or "Additive counting principle") If A and B are disjoint finite sets, then $|A \cup B| = |A| + |B|$.

Product Rule. (Or "Multiplicative counting principle")

Sum Rule. (Or "Additive counting principle") If A and B are disjoint finite sets, then $|A \cup B| = |A| + |B|$.

Product Rule. (Or "Multiplicative counting principle") If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$.

Sum Rule. (Or "Additive counting principle") If A and B are disjoint finite sets, then $|A \cup B| = |A| + |B|$.

Product Rule. (Or "Multiplicative counting principle") If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$.

In general, the Sum Rule is suggested when (exclusive) "OR" is being counted, while the Product Rule is suggested when (independent) "AND" is being counted.

Theorem.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

```
Theorem. If |X| = n, then |\mathcal{P}(X)| = 2^n.
```

Proof. Induction on |X|.

(Base case, n = 0.)

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$,

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$,

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n=0$$
.) $|X|=0 \Rightarrow X=\emptyset, \mathcal{P}(X)=\{\emptyset\}, |\mathcal{P}(X)|=1$

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

(Inductive step.)

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

(**Inductive step.**) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$ of size n+1.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$ of size n+1.

Let $A \subseteq \mathcal{P}(X_{n+1})$ be the set of those subsets of X that do not contain the last element, x_{n+1} , and let B be the set of those subsets of X that do contain the last element, x_{n+1} .

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$ of size n+1.

Let $A \subseteq \mathcal{P}(X_{n+1})$ be the set of those subsets of X that do not contain the last element, x_{n+1} , and let B be the set of those subsets of X that do contain the last element, x_{n+1} . $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$ of size n+1.

Let $A \subseteq \mathcal{P}(X_{n+1})$ be the set of those subsets of X that do not contain the last element, x_{n+1} , and let B be the set of those subsets of X that do contain the last element, x_{n+1} . $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$. $\mathcal{P}(X_{n+1})$ is the disjoint union of A and B.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$ of size n+1.

Let $A \subseteq \mathcal{P}(X_{n+1})$ be the set of those subsets of X that do not contain the last element, x_{n+1} , and let B be the set of those subsets of X that do contain the last element, x_{n+1} . $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$. $\mathcal{P}(X_{n+1})$ is the disjoint union of A and B. (A subset of X_{n+1} lies in either A OR B,

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$ of size n+1.

Let $A \subseteq \mathcal{P}(X_{n+1})$ be the set of those subsets of X that do not contain the last element, x_{n+1} , and let B be the set of those subsets of X that do contain the last element, x_{n+1} . $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$. $\mathcal{P}(X_{n+1})$ is the disjoint union of A and B. (A subset of X_{n+1} lies in either A OR B, but not both).

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$ of size n+1.

Let $A \subseteq \mathcal{P}(X_{n+1})$ be the set of those subsets of X that do not contain the last element, x_{n+1} , and let B be the set of those subsets of X that do contain the last element, x_{n+1} . $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$. $\mathcal{P}(X_{n+1})$ is the disjoint union of A and B. (A subset of X_{n+1} lies in either A OR B, but not both). By the Sum Rule,

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$ of size n+1.

Let $A \subseteq \mathcal{P}(X_{n+1})$ be the set of those subsets of X that do not contain the last element, x_{n+1} , and let B be the set of those subsets of X that do contain the last element, x_{n+1} . $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$. $\mathcal{P}(X_{n+1})$ is the disjoint union of A and B. (A subset of X_{n+1} lies in either A OR B, but not both). By the Sum Rule, $|\mathcal{P}(X_{n+1})| = |A| + |B| = 2^n + 2^n = 2^{n+1}$.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. Induction on |X|.

(Base case,
$$n = 0$$
.) $|X| = 0 \Rightarrow X = \emptyset$, $\mathcal{P}(X) = \{\emptyset\}$, $|\mathcal{P}(X)| = 1 = 2^0$.

(Inductive step.) Assume the theorem is true for sets of size n, and let's prove it for some set $X_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}$ of size n+1.

Let $A \subseteq \mathcal{P}(X_{n+1})$ be the set of those subsets of X that do not contain the last element, x_{n+1} , and let B be the set of those subsets of X that do contain the last element, x_{n+1} . $|A| = |B| = |\mathcal{P}(X_n)| = 2^n$. $\mathcal{P}(X_{n+1})$ is the disjoint union of A and B. (A subset of X_{n+1} lies in either A OR B, but not both). By the Sum Rule, $|\mathcal{P}(X_{n+1})| = |A| + |B| = 2^n + 2^n = 2^{n+1}$. \square

Theorem.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c \colon X \to \{0,1\}$.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c\colon X\to\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3,\ldots,n\}$ may be "described" by its characteristic function:

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c\colon X\to\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3,\ldots,n\}$ may be "described" by its characteristic function: (c(x)=1) iff $x\in S$

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c\colon X\to\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3,\ldots,n\}$ may be "described" by its characteristic function: (c(x)=1) iff $x\in S$

x	1	2	3	4	5	 n
c(x)	0	1	1	0	1	 0

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c\colon X\to\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3,\ldots,n\}$ may be "described" by its characteristic function: (c(x)=1) iff $x\in S$

x	1	2	3	4	5	 n
c(x)	0	1	1	0	1	 0

There are 2 choices for c(1), 2 independent choices for c(2), ..., 2 independent choices for c(n), so $|X| = 2 \cdot 2 \cdot \cdot \cdot 2 = 2^n$.

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c\colon X\to\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3,\ldots,n\}$ may be "described" by its characteristic function: (c(x)=1) iff $x\in S$

x	1	2	3	4	5	 n
c(x)	0	1	1	0	1	 0

There are 2 choices for c(1), 2 independent choices for c(2), ..., 2 independent choices for c(n), so $|X| = 2 \cdot 2 \cdot \cdot \cdot 2 = 2^n$. \square

Theorem. If |X| = n, then $|\mathcal{P}(X)| = 2^n$.

Proof. We count the number of subsets of X by counting the number of "descriptions" of subsets. This means we will count the number of characteristic functions $c\colon X\to\{0,1\}$. A subset $S=\{2,3,5\}$ of $X=\{1,2,3,\ldots,n\}$ may be "described" by its characteristic function: (c(x)=1) iff $x\in S$

x	1	2	3	4	5	• • •	n
c(x)	0	1	1	0	1		0

There are 2 choices for c(1), 2 independent choices for c(2), ..., 2 independent choices for c(n), so $|X| = 2 \cdot 2 \cdot \cdots \cdot 2 = 2^n$. \square

Here we used the fact that a subset $S\subseteq X$ can be described by specifying whether $1\in S$ AND specifying whether $2\in X$, etc.

From 2000-2015, CO license plates followed the pattern 000-AAA.

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000.

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

10

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

 10×10

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

 $10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$

How many possible plates for 2000-2018?

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

 $10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$

How many possible plates for 2000-2018?

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

We How many possible plates for 2000-2018? $10^3 \cdot 26^3$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

How many possible plates for 2000-2018?

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

How many possible plates for 2000-2018?

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 2 \cdot 10^3 \cdot 26^3$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

How many possible plates for 2000-2018?

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 2 \cdot 10^3 \cdot 26^3 = 35,152,000$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

How many possible plates for 2000-2018?

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 2 \cdot 10^3 \cdot 26^3 = 35,152,000$$

• How many possible plates for 2000-present?

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

4 How many possible plates for 2000-2018?

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 2 \cdot 10^3 \cdot 26^3 = 35,152,000$$

Mow many possible plates for 2000-present?

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

4 How many possible plates for 2000-2018?

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 2 \cdot 10^3 \cdot 26^3 = 35,152,000$$

3 How many possible plates for 2000-present? $10^3 \cdot 26^3$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

We will also a superior of the superior of

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 2 \cdot 10^3 \cdot 26^3 = 35,152,000$$

• How many possible plates for 2000-present? $10^3 \cdot 26^3 + 26^3 \cdot 10^3$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

We will also a solution of the second of

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 2 \cdot 10^3 \cdot 26^3 = 35,152,000$$

• How many possible plates for 2000-present?

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 + 26^4 \cdot 10^2$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

We will also a solution of the second of

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 2 \cdot 10^3 \cdot 26^3 = 35,152,000$$

Mow many possible plates for 2000-present?

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 + 26^4 \cdot 10^2 = 80,849,600$$

From 2000-2015, CO license plates followed the pattern 000-AAA. From 2015-2018, CO license plates followed the pattern AAA-000. From 2018-present, CO license plates follow the pattern AAA-A00.

Questions.

• How many possible plates for 2000-2015?

$$10 \times 10 \times 10 \times 26 \times 26 \times 26 = 10^3 \cdot 26^3 = 17,576,000$$

How many possible plates for 2000-2018?

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 = 2 \cdot 10^3 \cdot 26^3 = 35,152,000$$

Mow many possible plates for 2000-present?

$$10^3 \cdot 26^3 + 26^3 \cdot 10^3 + 26^4 \cdot 10^2 = 80,849,600$$

Number of functions from k to n

Theorem.

Theorem. The number of functions $f: k \to n$ is n^k .

Theorem. The number of functions $f: k \to n$ is n^k .

Proof.

Theorem. The number of functions $f: k \to n$ is n^k .

Proof. Count descriptions of such functions.

Theorem. The number of functions $f: k \to n$ is n^k .

Proof. Count descriptions of such functions.

x	1	2	3	4	5	• • •	k
f(x)	0	7	1	0	2		3

Theorem. The number of functions $f: k \to n$ is n^k .

Proof. Count descriptions of such functions.

x	1	2	3	4	5	 k
f(x)	0	7	1	0	2	 3

There are n choices for f(0), n (independent) choices for f(1), etc.

Theorem. The number of functions $f: k \to n$ is n^k .

Proof. Count descriptions of such functions.

x	1	2	3	4	5	 k
f(x)	0	7	1	0	2	 3

There are n choices for f(0), n (independent) choices for f(1), etc. Hence the number of functions is $n \cdot n \cdots n = n^k$.

Theorem. The number of functions $f: k \to n$ is n^k .

Proof. Count descriptions of such functions.

x	1	2	3	4	5	 k
f(x)	0	7	1	0	2	 3

There are n choices for f(0), n (independent) choices for f(1), etc. Hence the number of functions is $n \cdot n \cdots n = n^k$. \square

Theorem.

Theorem. The number of bijections from k to n is 0 if $k \neq n$; otherwise it is n!.

Theorem. The number of bijections from k to n is 0 if $k \neq n$; otherwise it is n!.

Proof.

Theorem. The number of bijections from k to n is 0 if $k \neq n$; otherwise it is n!.

Proof. Count descriptions of such functions. . . .

Theorem. The number of bijections from k to n is 0 if $k \neq n$; otherwise it is n!.

Proof. Count descriptions of such functions. . . .

Definition.

Theorem. The number of bijections from k to n is 0 if $k \neq n$; otherwise it is n!.

Proof. Count descriptions of such functions. . . .

Definition. A bijection $b \colon X \to X$ from a set X to itself is called a **permutation** of X.

Roses are red.

Roses are red. Violets are <u>blue</u>.

Roses are red. Violets are <u>blue</u>. Sugar is sweet.

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

• How many ways can we permute the lines of this poem to create a new poem?

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

• How many ways can we permute the lines of this poem to create a new poem?

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

• How many ways can we permute the lines of this poem to create a new poem? 4! = 24

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

- How many ways can we permute the lines of this poem to create a new poem? 4! = 24
- How many ways can we permute the lines to create a grammatically correct poem?

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

- How many ways can we permute the lines of this poem to create a new poem? 4! = 24
- How many ways can we permute the lines to create a grammatically correct poem?

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

- How many ways can we permute the lines of this poem to create a new poem? 4! = 24
- How many ways can we permute the lines to create a grammatically correct poem? (The problem is that a poem should not begin with "and", since "and" is a conjuction.)

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

- How many ways can we permute the lines of this poem to create a new poem? 4! = 24
- How many ways can we permute the lines to create a grammatically correct poem? (The problem is that a poem should not begin with "and", since "and" is a conjuction.) $3 \cdot 3! = 18$

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

- How many ways can we permute the lines of this poem to create a new poem? 4! = 24
- How many ways can we permute the lines to create a grammatically correct poem? (The problem is that a poem should not begin with "and", since "and" is a conjuction.) $3 \cdot 3! = 18$
- How many ways can we permute the lines to create a grammatically correct poem that rhymes?

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

- How many ways can we permute the lines of this poem to create a new poem? 4! = 24
- How many ways can we permute the lines to create a grammatically correct poem? (The problem is that a poem should not begin with "and", since "and" is a conjuction.) $3 \cdot 3! = 18$
- How many ways can we permute the lines to create a grammatically correct poem that rhymes?

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

- How many ways can we permute the lines of this poem to create a new poem? 4! = 24
- How many ways can we permute the lines to create a grammatically correct poem? (The problem is that a poem should not begin with "and", since "and" is a conjuction.) $3 \cdot 3! = 18$
- Now many ways can we permute the lines to create a grammatically correct poem that rhymes? $2! \cdot 2! = 4$

Roses are red. Violets are <u>blue</u>. Sugar is sweet. And so are you.

Questions.

- How many ways can we permute the lines of this poem to create a new poem? 4! = 24
- How many ways can we permute the lines to create a grammatically correct poem? (The problem is that a poem should not begin with "and", since "and" is a conjuction.) $3 \cdot 3! = 18$
- Now many ways can we permute the lines to create a grammatically correct poem that rhymes? $2! \cdot 2! = 4$

Theorem.

Theorem. The number of injections from k to n is

Theorem. The number of injections from k to n is

$$(n)_k = \underbrace{n \cdot (n-1) \cdot \cdot \cdot (n-k+1)}_{k \text{ factors}} = \frac{n!}{(n-k)!}.$$

Number of injections from k to n

Theorem. The number of injections from k to n is

$$(n)_k = \underbrace{n \cdot (n-1) \cdot \cdot \cdot (n-k+1)}_{k \text{ factors}} = \frac{n!}{(n-k)!}.$$

 $(n)_k$ is called a "falling factorial".

Counting 9/1

Number of injections from k to n

Theorem. The number of injections from k to n is

$$(n)_k = \underbrace{n \cdot (n-1) \cdot \cdot \cdot (n-k+1)}_{k \text{ factors}} = \frac{n!}{(n-k)!}.$$

 $(n)_k$ is called a "falling factorial".

Proof.

Counting 9/1

Number of injections from k to n

Theorem. The number of injections from k to n is

$$(n)_k = \underbrace{n \cdot (n-1) \cdot \cdot \cdot (n-k+1)}_{k \text{ factors}} = \frac{n!}{(n-k)!}.$$

 $(n)_k$ is called a "falling factorial".

Proof. Count descriptions of such functions. . . .

Counting 9/1

Exercises.

Exercises.

• How many cows do I have?

Exercises.

• How many cows do I have?

Exercises.

• How many cows do I have?

Count the legs and divide by 4.

Exercises.

• How many cows do I have?

Count the legs and divide by 4.

$$\#cows = \#legs/4$$

Exercises.

• How many cows do I have?

Count the legs and divide by 4.

$$\#cows = \#legs/4$$

Let X be a finite set, let E be a uniform equivalence relation on X, and let X/E be the set of E-classes.

$$|X/E| = |X|/(\text{common size of } E\text{-classes}).$$

Exercises.

• How many cows do I have?

Count the legs and divide by 4.

$$\#cows = \#legs/4$$

Let X be a finite set, let E be a uniform equivalence relation on X, and let X/E be the set of E-classes.

$$|X/E| = |X|/(\text{common size of } E\text{-classes}).$$

② Show that the number of 2-element subsets of n is n(n-1)/2.

Exercises.

• How many cows do I have?

Count the legs and divide by 4.

$$\#cows = \#legs/4$$

Let X be a finite set, let E be a uniform equivalence relation on X, and let X/E be the set of E-classes.

$$|X/E| = |X|/(\text{common size of } E\text{-classes}).$$

② Show that the number of 2-element subsets of n is n(n-1)/2.

Exercises.

• How many cows do I have?

Count the legs and divide by 4.

$$\#cows = \#legs/4$$

Let X be a finite set, let E be a uniform equivalence relation on X, and let X/E be the set of E-classes.

$$|X/E| = |X|/(\text{common size of } E\text{-classes}).$$

- ② Show that the number of 2-element subsets of n is n(n-1)/2.
- **Show,** more generally, that the number of k-element subsets of n is $(n)_k/k! = \binom{n}{k}$.

Exercises.

• How many cows do I have?

Count the legs and divide by 4.

$$\#cows = \#legs/4$$

Let X be a finite set, let E be a uniform equivalence relation on X, and let X/E be the set of E-classes.

$$|X/E| = |X|/(\text{common size of } E\text{-classes}).$$

- ② Show that the number of 2-element subsets of n is n(n-1)/2.
- **Show,** more generally, that the number of k-element subsets of n is $(n)_k/k! = \binom{n}{k}$.

Exercises.

• How many cows do I have?

Count the legs and divide by 4.

$$\#cows = \#legs/4$$

Let X be a finite set, let E be a uniform equivalence relation on X, and let X/E be the set of E-classes.

$$|X/E| = |X|/(\text{common size of } E\text{-classes}).$$

- ② Show that the number of 2-element subsets of n is n(n-1)/2.
- **Show,** more generally, that the number of k-element subsets of n is $(n)_k/k! = \binom{n}{k}$.