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Two basic counting principles

Sum Rule. (Or “Additive counting principle”) If A and B are disjoint finite
sets, then |[A U B| = |A| + | B].

Product Rule. (Or “Multiplicative counting principle”) If A and B are finite
sets, then |A x B| = |A| - |B].

In general, the Sum Rule is suggested when (exclusive) “OR” is being
counted, while the Product Rule is suggested when (independent) “AND” is
being counted.
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Theorem. If | X| = n, then |P(X)| = 2™.

Proof. We count the number of subsets of X by counting the number of
“descriptions” of subsets. This means we will count the number of
characteristic functions ¢: X — {0,1}. A subset S = {2,3,5} of

X =1{1,2,3,...,n} may be “described” by its characteristic function:
(c(z) =1iffx € 5)

L x [1[2]3[4]5]-n]|
Le@ Jofr]rfofi][---]0]
There are 2 choices for ¢(1), 2 independent choices for ¢(2), ..., 2

independent choices for ¢(n), so | X|=2-2---2=2".0

Here we used the fact that a subset S C X can be described by specifying
whether 1 € S AND specifying whether 2 € X, etc.
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Theorem. The number of bijections from k to n is 0 if k # n; otherwise it is
|
n..

Proof. Count descriptions of such functions. ...

Definition. A bijection b: X — X from a set X to itself is called a
permutation of X.
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