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The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set.

The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers.

We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”.

Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set.

If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A.

Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S.

By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds.

Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A.

2

The Axiom of Separation 2 / 4



The Axiom of Separation

Given a set A and a property given by a formula ϕ, there is a set whose
elements are the elements of A that satisfy ϕ.

That is, if A is a set, then {x ∈ A | ϕ(x)} is a set.

Example. We will see later that N = {0, 1, 2, . . .} is a set. The Axiom of
Separation allows us to create from N the set of prime numbers. We let π(x)
be a formula that expresses “x is prime”. Then the set of primes is
{x ∈ N | π(x)}.

The Axiom of Separation allows us to “cut out a subset” of a known set. If we
can describe the subset (by ϕ), then it is a set.

Mini-Theorem. If S = {x ∈ A | ϕ(x)}, then S ⊆ A.

Mini-Proof. We must show that z ∈ S implies z ∈ A. Assume that z ∈ S. By
the definition of S, z ∈ A and ϕ(z) holds. Already this shows that z ∈ A. 2

The Axiom of Separation 2 / 4



Axiom of Separation = “Restricted Comprehension”

Let’s compare two “slightly” different versions of the Axiom of Separation.

(Unrestricted Comprehension) {x | ϕ(x)} is a set.

(Restricted Comprehension) {x ∈ A | ϕ(x)} is a set.

(Comprehend = “include, comprise, encompass”.)

In the second version, we “restrict” the choice of x to belong to a known set. In the
first version, there is no restriction. In the first version, we can create any set as long
as we can describe its members. We will later see why Unrestricted Comprehension
is inconsistent, so we avoid its use except in the statement of the axioms. That is, we
allow unrestricted comprehension in the statement of the axioms, but to further
develop mathematics we confine ourselves to restricted comprehension.

Example. The Axiom of Pairing may be thought of as an example of Unrestricted
Comprehension in the axioms: If U and V are sets, then so is

{x | (x = U) ∨ (x = V)}.
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(Comprehend = “include, comprise, encompass”.)

In the second version, we “restrict” the choice of x to belong to a known set. In the
first version, there is no restriction. In the first version, we can create any set as long
as we can describe its members. We will later see why Unrestricted Comprehension
is inconsistent, so we avoid its use except in the statement of the axioms. That is, we
allow unrestricted comprehension in the statement of the axioms, but to further
develop mathematics we confine ourselves to restricted comprehension.
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More on Unrestricted Comprehension

Naive Set Theory allows Unrestricted Comprehension. (NST specifies that any
“unordered collection of distinct objects” is a set, so anything one can write down,
like {x | ϕ(x)}, is a set.) On this page, we indicate why, intuitively, Unrestricted
Comprehension might be a source of problems.

Example. Suppose I want to create the set of all mathematical concepts. I write down
a formula ϕ(x) expressing that “x is a mathematical concept”, then I define
C = {x | ϕ(x)}. Note that the meaning of C changes over time as new mathematical
concepts are created. If C is used in the creation of new mathematical concepts, then
the meaning of the new concepts also changes over time. Nothing is definite
anymore, and the changing meanings might lead to contradiction.

Point to Ponder. Why is this problem unlikely to arise if we confine ourselves to
Restricted Comprehension/Separation?
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