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@ (Initial Condition, IC) F'(0) = 1, and

@ (Recurrence relation, RR) F'(S(n)) = F(n) + (2n + 3).
Hence, if F(n) =1+3+---4 (2n+ 1), then
Fin+1)=Fn)+(2n+3)=(14+3+---+2n+1))+ (2n+3),as
desired.
Now our conjecture 1 + 3 + -+ - + (2n + 1) = (n + 1) is expressible in a

first-order way, F'(n) = (n + 1)2, so the Principle of Induction may be
applied to prove the conjecture.
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© Definition by Recursion allows us to start with fragments of information
concerning the definition of a function with domain N and be guaranteed
the existence of a uniquely determined function consistent with those
fragments of information. We do not need to give a formula for the
function, nor do we need to describe all the pairs in the function.

© The Principle of Induction allows us to give a finite-length argument to
derive conclusions in infinitely many cases.

© Induction is well-suited to prove facts about recursively-defined objects.
(Often it is the only way to prove such facts.)
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