Practice with propositions!

Remember the tables for $\land, \lor, \neg, \rightarrow, \leftrightarrow, \stackrel{\lor}{\rightharpoonup}$

Establish the following equivalences! (You may use the back of this page.)

The goal is to show that $\{\wedge, \lor, \neg\}$ are sufficient to express all the connectives from above. Then, you are asked to show that $\{\rightarrow, \neg\}$ are also sufficient to express all the connectives from above.

- (1) (\leq is redundant) $p \leq q \equiv \neg(p \leftrightarrow q)$
- (2) (\leftrightarrow is redundant) $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
- (3) (\rightarrow is redundant) $p \rightarrow q \equiv (\neg p) \lor q$

This is enough to show that any proposition expressible using $\land, \lor, \neg, \rightarrow, \leftrightarrow, \lor$ can be reexpressed using only \land, \lor, \neg . Now, we claim that any proposition expressible using \land, \lor, \neg can be re-expressed using only \rightarrow, \neg . Verify the following:

(4) $p \lor q \equiv (\neg p) \to q$ (5) $p \land q \equiv \neg (p \to (\neg q))$

Example. Let's check Item 5.

p	q	$\neg q$	$p \to (\neg q)$	$\neg(p \to (\neg q)))$	$p \wedge q$
0	0	1	1	0	0
0	1	0	1	0	0
1	0	1	1	0	0
1	1	0	0	1	1