When $1 < I(T, \aleph_0) < \aleph_0$

Theories with $I(T, \aleph_0) = n$

Throughout these slides, T will be a complete theory in a countable language. Usually, we will also assume that T has infinite models.

It is easy to construct a complete theory in a countable language that has n=0 isomorphism types of countably infinite models. E.g. $\mathrm{Th}(\mathbf{A})$ for some finite \mathbf{A} .

A theory in a countable language that has no finite maodels and has n=1 isomorphism type of countably infinite model must be complete (Łos-Vaught Completeness Criterion). These are the ω -categorical theories. They were characterized by Engeler, Ryll-Nardzewski, and Svenonius.

We know some examples of ω -categorical structures (infinite pure set, $\langle \mathbf{Q}; < \rangle$, the random graph, \aleph_0 -dimensional vector spaces over finite fields). Moreover, once we know some we can generate others:

Theorem. If A and B have the same language and both have oligomorphic automorphism groups, then $A \times B$ has an oligomorphic automorphism group. If the language is relational, then the same holds for the disjoint union $A \sqcup B$.

What if n > 1?

It is easy to construct incomplete theories with n models for any finite n.

Consider the language L with n unary predicates (colors of elements) and let T be the theory of infinite monochromatic sets. (I.e., any model of T is infinite and realizes exactly one of the n colors.) For n=3, this theory is axiomatized by sentences saying that models are infinite, along with

$$(\exists x) \operatorname{Red}(x) \to ((\forall x) \operatorname{Red}(x) \land \neg (\exists x) \operatorname{Blue}(x) \land \neg (\exists x) \operatorname{Green}(x))$$

plus all other sentences obtained from this one by permuting the colors.

Ehrenfeucht's Example shows that there are <u>complete</u> theories with $n=3,4,5,\ldots$ many isomorphism types of <u>countable</u> models.

What if n = 2 and T is complete?

Theorem. (Vaught) If T is a complete theory in a countable language L, then $I(T,\aleph_0)\neq 2$.

So, 2 is the only finite number that cannot arise as $I(T, \aleph_0)$ for complete T in a countable language.

One might call this theorem "Vaught's Theorem on the Nonexistence of a Complete Theory in a Countable Language with Exactly Two isomorphism Types of Countable Models".

Some people call it "Vaught's *Never Two* Theorem".

(A Google search using keywords "Vaught" and "never two" yielded 579,000 hits on April 28, 2024.)

It is proved by showing that if $1 < I(T, \aleph_0) \le \aleph_0$, then T has an atomic model, \mathbf{A} , a nonisomorphic ω -saturated model, \mathbf{S} , and a model \mathbf{B} that is neither atomic nor ω -saturated.

Never Two: The Proof

- Stage 1: T is small, hence has a countably infinite ω -saturated model S.
- Stage 2: T must also have a countably infinite atomic model A, and $A \ncong S$.
- Stage 3: There must exist $\mathbf{a} \in \mathbf{S}^n$ whose type is not isolated.
- Stage 4: The expansion S_a is an ω -saturated model of $T_a := \text{Th}(S_a)$, which is a small theory. (The theory of any weakly saturated model is small.) Hence T_a has a countably infinite atomic model B_b .
- Stage 5: $\operatorname{Aut}(\mathbf{S})$ does not act oligomorphically on \mathbf{S} , so the subgroup $\operatorname{Aut}(\mathbf{S_a})$ cannot act oligomorphically on $\mathbf{S_a}$. Hence $T_{\mathbf{a}}$ is not ω -categorical. Hence $\mathbf{S_a} \ncong \mathbf{B_b}$. Hence $\mathbf{B_b}$ is not an ω -saturated model of $T_{\mathbf{a}}$.
- Stage 6: The reduct \mathbf{B} of $\mathbf{B_b}$ to L cannot be isomorphic to \mathbf{A} , since the type of $\mathbf{b} \in \mathbf{B}^n$ is nonisolated.
- Stage 7: The reduct $\bf B$ of $\bf B_b$ to L also cannot be isomorphic to $\bf S$. Since $\bf B_b$ is not an ω -saturated model of $T_{\bf a}$. \square

The number of isomorphism types of countable models

We have seen examples of complete theories T in a countable language where the number $I(T,\aleph_0)$ of isomorphism types of countable models is any of the following cardinals.

- **1** 0 (Th(**A**), **A** finite.)
- ② 1 (Theory of an infinite pure set, of ordered set $\langle \mathbb{Q}; < \rangle$, of the random graph, of an infinite-dimensional vector space over a finite field).
- 3 (Whoops! "Never two".)
- $3, 4, 5, \dots$ (Ehrenfeucht-type theories.)
- **③** \aleph_0 (ACF_p, infinite ℚ-vector spaces.)
- **1** 2^{\aleph_0} (Theory of $\langle \omega; +, \cdot \rangle$, of the field \mathbb{Q} , any model of ZFC.)

Vaught's Conjecture

Vaught conjectured that the cardinals on the previous slide are the only possibilities. Specifically,

Vaught's Conjecture, (1961). If T is a complete theory in a countable language and T has uncountably many isomorphism types of countable models, then T has continuumly many isomorphism types of countable models. (Equivalently, $\aleph_0 < I(T,\aleph_0) < 2^{\aleph_0}$ is impossible.)

This was originally stated in the form of a problem rather than a conjecture.

If CH holds $(\aleph_0^+ = 2^{\aleph_0})$, then there is nothing to prove, so why bother?

Reformulated Conjecture. If T is a complete theory in a countable language and all type spaces $S_n(T)$ are scattered, then T has countably many isomorphism types of countable models.

Morley's Theorem

Morley's Theorem. If T is a complete theory in a countable language, then

- if all $S_n(T)$ are scattered, then $I(T, \aleph_0) \leq \aleph_1$,

Vaught's Conjecture is that:

- if all $S_n(T)$ are scattered, then $I(T, \aleph_0) \leq \aleph_0$,
- ② hence $\aleph_0 < I(T, \aleph_0) < 2^{\aleph_0}$ is impossible.

In 2002, Robin Knight of Oxford posted a 117-page preprint with a "proposed counterexample" to Vaught's Conjecture. He asserts to have constructed a complete theory T in a countable language with $I(T,\aleph_0)=\aleph_1$. The current status of this counterexample is "not verified".

The Baldwin-Lachlan Theorem

For any uncountably categorical theory there are a limited number of possibilities for $I(T,\aleph_0)$.

Theorem. If T is a complete theory in a countable language, and κ is uncountable, then $I(T, \kappa) = 1$ implies that $I(T, \aleph_0) = 1$ or $I(T, \aleph_0) = \aleph_0$.

In particular, if $S_n(T)$ is uncountable for some n, then T is not κ -categorical for any infinite κ .

A related result:

Morley's Other Theorem. If T is a complete theory in a countable language, and $\kappa \leq \kappa'$ are uncountable, then $I(T,\kappa)=1$ if and only if $I(T,\kappa')=1$.

Problem for you! Can you give examples of complete, countable theories T for which the pair $(I(T,\aleph_0),I(T,\aleph_1))$ realizes each of the possibilities $(1,1),(1,\neq 1),(\neq 1,1),(\neq 1,\neq 1)$?

Some answers to the Problem on the previous slide

- (Complete theories that are κ -categorical for all infinite κ) The theory of infinite sets. The theory of infinite \mathbb{F}_q -vector spaces. The theory of infinite sets equipped with a fixed-point-free permutation of prime order.
- ② (Complete theories that are categorical in power \aleph_0 only) DLO. The theory of the random graph. The theory of an equivalence relation with exactly two classes, both infinite.
- **③** (Complete theories that are κ -categorical for uncountable κ only) ACF_p. The theory of infinite \mathbb{Q} -vector spaces. The theory of the natural numbers equipped with the successor function. The theory of infinite, 2-regular, acyclic graphs.
- (Complete theories that are not categorical in any infinite power) Any complete theory where $S_n(T)$ is uncountable for some n. For example, the complete theory of $\langle \omega; +, \cdot \rangle$. The complete theory of any model of ZFC. The theory of countably many independent unary predicates.